Pathogenesis of atopic dermatitis: A short review

Abstract Atopic dermatitis (AD) is the most common inflammatory skin disease in children, may persist into adulthood, and is difficult to treat. Recent data in both experimental models and patients have shed new light on the multifactorial etiology of this chronic disease. In this review, we summarize the pathomechanism of AD in the following three sections: (1) defects in skin barrier including the role of filaggrin; (2) the immunological response of patients including key roles of T cells, dendritic cells, innate lymphoid cells, mast cells, and eosinophils; and (3) environmental factors such as the role of skin microbiota including Staphylococcus aureus.

[1]  H. Kong,et al.  Dysbiosis and Staphylococcus aureus Colonization Drives Inflammation in Atopic Dermatitis. , 2015, Immunity.

[2]  S. Nutten Atopic Dermatitis: Global Epidemiology and Risk Factors , 2015, Annals of Nutrition and Metabolism.

[3]  W. Weninger,et al.  Dermal group 2 innate lymphoid cells in atopic dermatitis and allergy. , 2014, Current opinion in immunology.

[4]  E. Guttman‐Yassky,et al.  Successful use of ustekinumab therapy in refractory severe atopic dermatitis , 2014, JAAD case reports.

[5]  Jonathan R. Brestoff,et al.  Basophils Promote Innate Lymphoid Cell Responses in Inflamed Skin , 2014, The Journal of Immunology.

[6]  T. Bieber,et al.  Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. , 2014, The New England journal of medicine.

[7]  Wolfgang Weninger,et al.  Leukocyte migration in the interstitial space of non-lymphoid organs , 2014, Nature Reviews Immunology.

[8]  M. Tamari,et al.  Genome‐wide association studies of atopic dermatitis , 2014, The Journal of dermatology.

[9]  G. Imokawa,et al.  Role of Ceramide in the Barrier Function of the Stratum Corneum, Implications for the Pathogenesis of Atopic Dermatitis , 2014 .

[10]  G. Ogg,et al.  A role for IL-25 and IL-33–driven type-2 innate lymphoid cells in atopic dermatitis , 2013, The Journal of experimental medicine.

[11]  W. Weninger,et al.  The Skin-Resident Immune Network , 2013, Current Dermatology Reports.

[12]  M. Setou,et al.  Barrier abnormality due to ceramide deficiency leads to psoriasiform inflammation in a mouse model. , 2013, The Journal of investigative dermatology.

[13]  C. Flohr,et al.  Does early life exposure to antibiotics increase the risk of eczema? A systematic review , 2013, The British journal of dermatology.

[14]  K. Nakanishi,et al.  Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice , 2013, Proceedings of the National Academy of Sciences.

[15]  W. Paul,et al.  Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells , 2013, Nature Immunology.

[16]  U. Keil,et al.  The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three: a global synthesis. , 2013, Allergologia et immunopathologia.

[17]  M. Hepworth,et al.  TSLP Elicits IL-33–Independent Innate Lymphoid Cell Responses to Promote Skin Inflammation , 2013, Science Translational Medicine.

[18]  B. Jurkiewicz,et al.  T-regulatory cells in severe atopic dermatitis: alterations related to cytokines and other lymphocyte subpopulations , 2012, Archives of Dermatological Research.

[19]  C. Deming,et al.  Compartmentalized Control of Skin Immunity by Resident Commensals , 2012, Science.

[20]  A. Sheikh,et al.  Systematic Review of Epidemiological Studies , 2022 .

[21]  D. Artis,et al.  Innate lymphoid cells: critical regulators of allergic inflammation and tissue repair in the lung. , 2012, Current opinion in immunology.

[22]  H. Mizuno,et al.  Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. , 2012, The Journal of allergy and clinical immunology.

[23]  Julia Oh,et al.  Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis , 2012, Genome research.

[24]  G. Ogg,et al.  IL‐17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion , 2012, Experimental dermatology.

[25]  A. Laurence,et al.  Mast cell interleukin-2 production contributes to suppression of chronic allergic dermatitis. , 2011, Immunity.

[26]  A. Irvine,et al.  Filaggrin mutations associated with skin and allergic diseases. , 2011, The New England journal of medicine.

[27]  T. Bieber,et al.  Iconographies supplémentaires de l'article : FcεRI engagement of Langerhans cell–like dendritic cells and inflammatory dendritic epidermal cell–like dendritic cells induces chemotactic signals and different T-cell phenotypes in vitro , 2011 .

[28]  K. Kabashima,et al.  Langerhans cells are critical in the pathogenesis of atopic dermatitis via TSLP receptor signaling (103.1) , 2011, The Journal of Immunology.

[29]  Y. Wan,et al.  Multi‐tasking of helper T cells , 2010, Immunology.

[30]  Y. Tokura Extrinsic and intrinsic types of atopic dermatitis. , 2010, Journal of dermatological science.

[31]  T. Kawakami,et al.  Mast cells in atopic dermatitis. , 2009, Current opinion in immunology.

[32]  T. Miyawaki,et al.  Expansion of FOXP3-positive CD4+CD25+ T cells associated with disease activity in atopic dermatitis. , 2009, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.

[33]  J. Krueger,et al.  Cytokine-Producing Dendritic Cells in the Pathogenesis of Inflammatory Skin Diseases , 2009, Journal of Clinical Immunology.

[34]  C. Herrick,et al.  The immune system and atopic dermatitis. , 2008, Seminars in cutaneous medicine and surgery.

[35]  K. Takamori,et al.  Intraepidermal nerve fibers increase in dry skin of acetone-treated mice. , 2007, Journal of dermatological science.

[36]  M. Dieguez,et al.  Prevalence of allergy and anaphylactic symptoms in 210 adult and pediatric patients with mastocytosis in Spain: a study of the Spanish network on mastocytosis (REMA) , 2007, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[37]  K. Barnes,et al.  Cytokine modulation of atopic dermatitis filaggrin skin expression. , 2007, The Journal of allergy and clinical immunology.

[38]  N. Klopp,et al.  Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. , 2006, The Journal of allergy and clinical immunology.

[39]  R. Tazi-Ahnini,et al.  New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. , 2006, The Journal of allergy and clinical immunology.

[40]  Barbara S Baker,et al.  The role of microorganisms in atopic dermatitis , 2006, Clinical and experimental immunology.

[41]  Colin N A Palmer,et al.  Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis , 2006, Nature Genetics.

[42]  M. Steinhoff,et al.  IL-31: a new link between T cells and pruritus in atopic skin inflammation. , 2006, The Journal of allergy and clinical immunology.

[43]  S. Bale,et al.  Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris , 2006, Nature Genetics.

[44]  A. Lindén,et al.  Interleukin-17 family members and inflammation. , 2004, Immunity.

[45]  T. Bieber,et al.  FcepsilonRI engagement of Langerhans cell-like dendritic cells and inflammatory dendritic epidermal cell-like dendritic cells induces chemotactic signals and different T-cell phenotypes in vitro. , 2004, The Journal of allergy and clinical immunology.

[46]  L. Ou,et al.  T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. , 2004, The Journal of allergy and clinical immunology.

[47]  Donald Y M Leung,et al.  Amendment history : Erratum ( April 2004 ) New insights into atopic dermatitis , 2018 .

[48]  M. Moffatt,et al.  SPINK5: A gene for atopic dermatitis and asthma , 2004, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[49]  A. Rawlings,et al.  Moisturization and skin barrier function , 2004, Dermatologic therapy.

[50]  A. Paller,et al.  Atopic dermatitis and the atopic march. , 2003, The Journal of allergy and clinical immunology.

[51]  Y. Narisawa,et al.  Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. , 2003, The Journal of allergy and clinical immunology.

[52]  G. Hartmann,et al.  Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. , 2002, The Journal of investigative dermatology.

[53]  E. Hossny,et al.  Increased plasma eotaxin in atopic dermatitis and acute urticaria in infants and children , 2001, Allergy.

[54]  C. Akdis,et al.  Epidemiology, clinical features, and immunology of the “intrinsic” (non‐IgE‐mediated) type of atopic dermatitis (constitutional dermatitis) , 2001, Allergy.

[55]  C. Bodemer,et al.  Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome , 2000, Nature Genetics.

[56]  J. Ring,et al.  Skin surface pH, stratum corneum hydration, trans-epidermal water loss and skin roughness related to atopic eczema and skin dryness in a population of primary school children. , 2000, Acta dermato-venereologica.

[57]  R. de Waal Malefyt,et al.  Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. , 1998, The Journal of investigative dermatology.

[58]  C. Bruijnzeel-Koomen,et al.  A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis. , 1998, Immunology today.

[59]  S. Durham,et al.  Eosinophils and eosinophil-associated cytokines in allergic inflammation. , 1997, International archives of allergy and immunology.

[60]  E. Minshall,et al.  In vivo expression of IL-12 and IL-13 in atopic dermatitis. , 1996, The Journal of allergy and clinical immunology.

[61]  S. Seidenari,et al.  Objective assessment of the skin of children affected by atopic dermatitis: a study of pH, capacitance and TEWL in eczematous and clinically uninvolved skin. , 1995, Acta dermato-venereologica.

[62]  R. Newcombe,et al.  CIGARETTE SMOKING IS NOT A RISK FACTOR IN ATOPIC DERMATITIS , 1994, International journal of dermatology.

[63]  I. Horii,et al.  The role of proteases in stratum corneum: involvement in stratum corneum desquamation , 1993, Archives of Dermatological Research.

[64]  M Kawashima,et al.  Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? , 1991, The Journal of investigative dermatology.

[65]  A. Murray,et al.  It is children with atopic dermatitis who develop asthma more frequently if the mother smokes. , 1990, The Journal of allergy and clinical immunology.

[66]  J. Ratz,et al.  Lasers in Cutaneous Medicine and Surgery , 1987 .

[67]  D. Jenkinson,et al.  The effect of washing on the thickness of the stratum corneum in normal and atopic individuals , 1987, The British journal of dermatology.

[68]  A. Burlingame,et al.  Human stratum corneum lipids: characterization and regional variations. , 1983, Journal of lipid research.

[69]  J. Leyden,et al.  Staphylococcus aureus in the lesions of atopic dermatitis , 1974, The British journal of dermatology.

[70]  古賀 千律子 Possible pathogenic role of Th17 cells for atopic dermatitis , 2011 .

[71]  N. Bhatia Regulatory T cells in atopic dermatitis: epidermal dendritic cell clusters may contribute to their local expansion , 2010 .

[72]  D. Strachan,et al.  Reduced diversity in the early fecal microbiota of infants with atopic eczema. , 2008, The Journal of allergy and clinical immunology.

[73]  伊藤 靖典 Expansion of FOXP3-positive CD4[+]CD25[+] T cells associated with disease activity in atopic dermatitis , 2008 .

[74]  P. Bruijnzeel,et al.  Immunological aspects of extrinsic and intrinsic asthma. , 1989, Agents and actions. Supplements.