Development and application of a coupled-process parameter inversion model based on the maximum likelihood estimation method

The coupled flow-mass transport inverse problem is formulated using the maximum likelihood estimation concept. An evolutionary computational algorithm, the genetic algorithm, is applied to search for a global or near-global solution. The resulting inverse model allows for flow and transport parameter estimation, based on inversion of spatial and temporal distributions of head and concentration measurements. Numerical experiments using a subset of the three-dimensional tracer tests conducted at the Columbus, Mississippi site are presented to test the model's ability to identify a wide range of parameters and parametrization schemes. The results indicate that the model can be applied to identify zoned parameters of hydraulic conductivity, geostatistical parameters of the hydraulic conductivity field, angle of hydraulic conductivity anisotropy, solute hydrodynamic dispersivity, and sorption parameters. The identification criterion, or objective function residual, is shown to decrease significantly as the complexity of the hydraulic conductivity parametrization is increased. Predictive modeling using the estimated parameters indicated that the geostatistical hydraulic conductivity distribution scheme produced good agreement between simulated and observed heads and concentrations. The genetic algorithm, while providing apparently robust solutions, is found to be considerably less efficient computationally than a quasi-Newton algorithm.

[1]  J. Scales,et al.  Global optimization methods for multimodal inverse problems , 1992 .

[2]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[3]  J. Parker,et al.  Analysis of the inverse problem for transient unsaturated flow , 1988 .

[4]  J. Harris,et al.  Coupled seismic and tracer test inversion for aquifer property characterization , 1993 .

[5]  S. Gorelick,et al.  Optimal groundwater quality management under parameter uncertainty , 1987 .

[6]  E. G. Vomvoris,et al.  A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one‐dimensional simulations , 1983 .

[7]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[8]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[9]  Charles F. Harvey,et al.  Mapping Hydraulic Conductivity: Sequential Conditioning with Measurements of Solute Arrival Time, Hydraulic Head, and Local Conductivity , 1995 .

[10]  Allan D. Woodbury,et al.  Simultaneous inversion of hydrogeologic and thermal data: 2. Incorporation of thermal data , 1988 .

[11]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[12]  Steven M. Gorelick,et al.  Coupled process parameter estimation and prediction uncertainty using hydraulic head and concentration data , 1991 .

[13]  Wen-sen Chu,et al.  Parameter Identification of a Ground‐Water Contaminant Transport Model , 1986 .

[14]  Jack C. Parker,et al.  Parameter estimation for coupled unsaturated flow and transport , 1989 .

[15]  Peter K. Kitanidis,et al.  Recent advances in geostatistical inference on hydrogeological variables (95RG00183) , 1995 .

[16]  Jesús Carrera,et al.  State of the Art of the Inverse Problem Applied to the Flow and Solute Transport Equations , 1988 .

[17]  Thomas B. Stauffer,et al.  Database for the Second Macrodispersion Experiment (MADE-2). , 1993 .

[18]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[19]  S. P. Neuman,et al.  Analysis of nonintrinsic spatial variability by residual kriging with application to regional groundwater levels , 1984 .

[20]  Side Jin,et al.  Background velocity inversion with a genetic algorithm , 1993 .

[21]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[22]  M. Sambridge,et al.  Genetic algorithms in seismic waveform inversion , 1992 .

[23]  Paul P. Wang,et al.  MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User's Guide , 1999 .

[24]  L. N. Frazer,et al.  Vertical seismic profile inversion with genetic algorithms , 1994 .

[25]  H. C. Barlebo,et al.  Identification of groundwater parameters at Columbus, Mississippi, using a 3D inverse flow and transport model , 1996 .

[26]  Malcolm Sambridge,et al.  Earthquake hypocenter location using genetic algorithms , 1993, Bulletin of the Seismological Society of America.

[27]  E. Eric Adams,et al.  Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description , 1992 .

[28]  Robert Willis,et al.  Identification of aquifer dispersivities in two-dimensional transient groundwater Contaminant transport: An optimization approach , 1979 .

[29]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[30]  Determination of transport model parameters in groundwater aquifers , 1977 .

[31]  L. Gelhar,et al.  Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis , 1992 .

[32]  E. Eric Adams,et al.  Field study of dispersion in a heterogeneous aquifer , 1992 .

[33]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[34]  E. Eric Adams,et al.  Field study of dispersion in a heterogeneous aquifer: 4. Investigation of adsorption and sampling bias , 1992 .

[35]  Allan D. Woodbury,et al.  Simultaneous inversion of hydrogeologic and thermal data: 1. Theory and application using hydraulic head data , 1987 .

[36]  William W.-G. Yeh,et al.  Coupled inverse problems in groundwater modeling - 1. Sensitivity analysis and parameter identification. , 1990 .