Convergence of a high order method in time and space for the miscible displacement equations

A numerical method is formulated and analyzed for solving the miscible displacement problem under low regularity assumptions. The scheme employs discontinuous Galerkin time stepping with mixed and interior penalty discontinuous Galerkin finite elements in space. The numerical approx- imations of the pressure, velocity, and concentration converge to the weak solution as the mesh size and time step tend to zero. To pass to the limit a compactness theorem is developed which generalizes the Aubin−Lions theorem to accommodate discontinuous functions both in space and in time.

[1]  Alexandre Ern,et al.  Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations , 2010, Math. Comput..

[2]  Kenneth Eriksson,et al.  Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .

[3]  Richard E. Ewing,et al.  A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media , 1983 .

[4]  Richard E. Ewing,et al.  Galerkin Methods for Miscible Displacement Problems in Porous Media , 1979 .

[5]  Y. Epshteyn,et al.  CONVERGENCE OF HIGH ORDER METHODS FOR MISCIBLE DISPLACEMENT , 2008 .

[6]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[7]  T. F. Russell,et al.  Time Stepping Along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media , 1985 .

[8]  Béatrice Rivière,et al.  Convergence of a Discontinuous Galerkin Method for the Miscible Displacement Equation under Low Regularity , 2011, SIAM J. Numer. Anal..

[9]  Sören Bartels,et al.  Discontinuous Galerkin Finite Element Convergence for Incompressible Miscible Displacement Problems of Low Regularity , 2009, SIAM J. Numer. Anal..

[10]  Richard E. Ewing,et al.  Mathematical analysis for reservoir models , 1999 .

[11]  Max Jensen,et al.  Stable Crank–Nicolson Discretisation for Incompressible Miscible Displacement Problems of Low Regularity , 2009, 0910.1516.

[12]  Mario Ohlberger,et al.  Convergence of a Mixed Finite Element - Finite Volume Method for the Two Phase Flow in Porous Media , 2009 .

[13]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[14]  Convergence of a Discontinuous Galerkin Method For the Miscible Displacement Under Minimal Regularity , 2009 .

[15]  A. Buffa,et al.  Compact embeddings of broken Sobolev spaces and applications , 2009 .

[16]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[17]  A. Buffa,et al.  Variational Convergence of IP-DGFEM , 2007 .

[18]  Richard E. Ewing,et al.  Efficient Time-Stepping Methods for Miscible Displacement Problems in Porous Media , 1982 .

[19]  B. Rivière,et al.  A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media , 2002 .

[20]  X. B. Feng On Existence and Uniqueness Results for a Coupled System Modeling Miscible Displacement in Porous Media , 1995 .

[21]  Noel Walkington,et al.  Compactness Properties of the DG and CG Time Stepping Schemes for Parabolic Equations , 2010, SIAM J. Numer. Anal..

[22]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .