Multiple Focus and Hopf Bifurcations in a Predator-Prey System with Nonmonotonic Functional Response
暂无分享,去创建一个
[1] Y. Kuang. Nonuniqueness of Limit Cycles of Gause-Type Predator-Prey Systems , 1988 .
[2] H. I. Freedman. Deterministic mathematical models in population ecology , 1982 .
[3] J Hofbauer,et al. Multiple limit cycles for predator-prey models. , 1990, Mathematical biosciences.
[4] R M May,et al. Stable Limit Cycles in Prey-Predator Populations , 1973, Science.
[5] L. Perko. Differential Equations and Dynamical Systems , 1991 .
[6] Shigui Ruan,et al. Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response , 2001, SIAM J. Appl. Math..
[7] M. Rosenzweig. Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.
[8] D M Wrzosek,et al. Limit cycles in predator-prey models. , 1990, Mathematical biosciences.
[9] Gail S. K. Wolkowicz,et al. Bifurcation Analysis of a Predator-Prey System Involving Group Defence , 1988 .
[10] F. Rothe,et al. Multiple bifurcation in a predator–prey system with nonmonotonic predator response , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[11] J. Hale,et al. Methods of Bifurcation Theory , 1996 .
[12] Paul Waltman,et al. Multiple limit cycles in the chemostat with variable yield. , 2003, Mathematical biosciences.
[13] Robert M. May,et al. Limit Cycles in Predator-Prey Communities , 1972, Science.
[14] G S Wolkowicz,et al. Predator-prey systems with group defence: The paradox of enrichment revisited , 1986, Bulletin of mathematical biology.
[15] 韩茂安. LIAPUNOV CONSTANTS AND HOPF CYCLICITY OF LIENARD SYSTEMS , 1999 .
[16] Konstantin Mischaikow,et al. A predator-prey system involving group defense: a connection matrix approach , 1990 .
[17] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[18] Huaiping Zhu,et al. Bifurcation Analysis of a Predator-Prey System with Nonmonotonic Functional Response , 2003, SIAM J. Appl. Math..
[19] N. D. Kazarinoff,et al. A model predator-prey system with functional response , 1978 .
[20] Sergei S. Pilyugin,et al. Divergence Criterion for Generic Planar Systems , 2003, SIAM J. Appl. Math..
[21] Dongmei Xiao,et al. On the uniqueness and nonexistence of limit cycles for predator?prey systems , 2003 .