Positional Isomers of Chromophore-Peptide Conjugates Self-Assemble into Different Morphologies.

Ordering π-systems into defined supramolecular structures is important for the development of organic functional materials. In recent years, peptides with defined secondary structures and/or self-assembly properties were introduced as powerful tools to order peptide-chromophore conjugates into different morphologies. This work explores whether or not the directionality of peptides can be used to control the self-assembly. The position of the π-system in conjugates between oligoprolines and perylene monoimide (PMI) chromophores was varied by attaching the PMI moiety to the second-to-last residue from the C- and N-termini, respectively. Microscopic and diffraction analysis revealed that the positional isomers form distinctly different supramolecular architectures that extend into the micrometer regime. NMR spectroscopic studies in solution phase allowed correlation of the self-assembly properties with markedly different conformational preferences of the isomeric building blocks. These insights enabled the design of building blocks with predictable self-assembly properties. Thus, the directionality of peptides offers exciting opportunities for controlling the self-assembly and electronic properties of π-systems.

[1]  Stefanie Dobitz,et al.  Oligoprolines as Molecular Entities for Controlling Distance in Biological and Material Sciences. , 2017, Accounts of chemical research.

[2]  Wojciech Pisula,et al.  A triaxial supramolecular weave , 2017, Nature Chemistry.

[3]  L. Serpell,et al.  Kinetically Controlled Coassembly of Multichromophoric Peptide Hydrogelators and the Impacts on Energy Transport. , 2017, Journal of the American Chemical Society.

[4]  Chen Li,et al.  Effect of Structural Modifications on the Self-Assembly of Oligoprolines Conjugated with Sterically Demanding Chromophores. , 2016, Chemistry.

[5]  J. Tovar,et al.  Photoinduced Electron Transfer within Supramolecular Donor-Acceptor Peptide Nanostructures under Aqueous Conditions. , 2016, Journal of the American Chemical Society.

[6]  David Schmidt,et al.  Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. , 2016, Chemical reviews.

[7]  J. Tovar,et al.  Peptide π-Electron Conjugates: Organic Electronics for Biology? , 2015, Bioconjugate chemistry.

[8]  G. Jeschke,et al.  Shape Persistence of Polyproline II Helical Oligoprolines. , 2015, Chemistry.

[9]  J. Tovar,et al.  Energy transfer within responsive pi-conjugated coassembled peptide-based nanostructures in aqueous environments† †Electronic supplementary information (ESI) available: Characterization data for the peptides, Fig. S1–S7; and additional data (DLS data, energy-minimized models, TEM images, UV-vis/PL/I , 2014, Chemical science.

[10]  K. Müllen,et al.  Hierarchical supramolecular assembly of sterically demanding π-systems by conjugation with oligoprolines. , 2014, Angewandte Chemie.

[11]  N. Trapp,et al.  A crystal structure of an oligoproline PPII-helix, at last. , 2014, Journal of the American Chemical Society.

[12]  Pim W. J. M. Frederix,et al.  Differential self-assembly and tunable emission of aromatic peptide bola-amphiphiles containing perylene bisimide in polar solvents including water. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[13]  G. Schweicher,et al.  What Currently Limits Charge Carrier Mobility in Crystals of Molecular Semiconductors , 2014 .

[14]  N. Ashkenasy,et al.  Introducing charge transfer functionality into prebiotically relevant β-sheet peptide fibrils. , 2014, Chemical communications.

[15]  Youbing Mu,et al.  Assembly of peptide–thiophene conjugates: the influence of peptide content and location , 2014 .

[16]  R. Nigon,et al.  Two-fold odd-even effect in self-assembled nanowires from oligopeptide-polymer-substituted perylene bisimides. , 2014, Journal of the American Chemical Society.

[17]  S. Stupp,et al.  Supramolecular Chemistry and Self-Assembly in Organic Materials Design , 2014 .

[18]  R. Mansi,et al.  Hybrid bombesin analogues: combining an agonist and an antagonist in defined distances for optimized tumor targeting. , 2013, Journal of the American Chemical Society.

[19]  R. Mezzenga,et al.  Hierarchically structured microfibers of "single stack" perylene bisimide and quaterthiophene nanowires. , 2013, ACS nano.

[20]  K. Kiick,et al.  Polymer–peptide templates for controlling electronic interactions of organic chromophores , 2013 .

[21]  G. Papoian,et al.  Interfacial energy conversion in Ru(II) polypyridyl-derivatized oligoproline assemblies on TiO2. , 2013, Journal of the American Chemical Society.

[22]  J. Tovar,et al.  Supramolecular construction of optoelectronic biomaterials. , 2013, Accounts of chemical research.

[23]  S. Matile,et al.  A quantitative model for the transcription of 2D patterns into functional 3D architectures. , 2012, Nature chemistry.

[24]  E. J. Aitken,et al.  Controlled aggregation of peptide-substituted perylene-bisimides. , 2012, Chemical communications.

[25]  G. Upert,et al.  Oligoprolines as scaffolds for the formation of silver nanoparticles in defined sizes: correlating molecular and nanoscopic dimensions. , 2012, Angewandte Chemie.

[26]  Holger Frauenrath,et al.  Development of a robust supramolecular method to prepare well-defined nanofibrils from conjugated molecules , 2012 .

[27]  J. DiMaio,et al.  Coassembly of enantiomeric amphipathic peptides into amyloid-inspired rippled β-sheet fibrils. , 2012, Journal of the American Chemical Society.

[28]  A. Holmes,et al.  Hierarchical self-assembly of semiconductor functionalized peptide α-helices and optoelectronic properties. , 2011, Journal of the American Chemical Society.

[29]  Li Zhang,et al.  Semiconductive, one-dimensional, self-assembled nanostructures based on oligopeptides with π-conjugated segments. , 2011, Chemistry.

[30]  Frank Würthner,et al.  J‐Aggregate: von ihrer zufälligen Entdeckung bis zum gezielten supramolekularen Aufbau funktioneller Farbstoffmaterialien , 2011 .

[31]  F. Würthner,et al.  J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. , 2011, Angewandte Chemie.

[32]  A. Schenning,et al.  Hydrogen-bonded Supramolecular π-Functional Materials† , 2011 .

[33]  Derek N. Woolfson,et al.  More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials. , 2010, Chemical Society reviews.

[34]  J. V. Hest,et al.  Stimulus responsive peptide based materials. , 2010, Chemical Society reviews.

[35]  J. Tovar,et al.  On-resin dimerization incorporates a diverse array of pi-conjugated functionality within aqueous self-assembling peptide backbones. , 2010, Chemical communications.

[36]  David L Bryce,et al.  Direct detection of CH/pi interactions in proteins. , 2010, Nature chemistry.

[37]  P. Bäuerle,et al.  Biomolecule assisted self-assembly of π-conjugated oligomers , 2010 .

[38]  R. Nolte,et al.  Macromolecular multi-chromophoric scaffolding. , 2010, Chemical Society reviews.

[39]  H. Overkleeft,et al.  Oligoproline helices as structurally defined scaffolds for oligomeric G protein-coupled receptor ligands. , 2010, Organic & biomolecular chemistry.

[40]  S. Stupp,et al.  Self-assembling quinquethiophene–oligopeptide hydrogelators , 2009 .

[41]  H. Börner,et al.  Oligothiophene Versus β‐Sheet Peptide: Synthesis and Self‐Assembly of an Organic Semiconductor‐Peptide Hybrid , 2009 .

[42]  E. W. Meijer,et al.  Preparation and characterization of helical self-assembled nanofibers. , 2009, Chemical Society reviews.

[43]  E. W. Meijer,et al.  Oligo(p-phenylenevinylene)-peptide conjugates: synthesis and self-assembly in solution and at the solid-liquid interface. , 2008, Journal of the American Chemical Society.

[44]  J. Tovar,et al.  One-dimensional optoelectronic nanostructures derived from the aqueous self-assembly of pi-conjugated oligopeptides. , 2008, Journal of the American Chemical Society.

[45]  H. Frauenrath,et al.  A general concept for the preparation of hierarchically structured pi-conjugated polymers. , 2008, Chemistry.

[46]  Zhijian Chen,et al.  Effect of core twisting on self-assembly and optical properties of perylene bisimide dyes in solution and columnar liquid crystalline phases. , 2007, Chemistry.

[47]  M. Galvin,et al.  Manipulating Association of Electroactive Chromophores via the Use of Peptidic Templates , 2006 .

[48]  E. W. Meijer,et al.  About Supramolecular Assemblies of π-Conjugated Systems , 2005 .

[49]  P. Bäuerle,et al.  Synthesis of a silk-inspired peptide-oligothiophene conjugate. , 2004, Organic & biomolecular chemistry.

[50]  Frank Würthner,et al.  Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. , 2004, Chemical communications.

[51]  K. Müllen,et al.  Alpha-helical-within-discotic columnar structures of a complex between poly(ethylene oxide)-block-poly(l-lysine) and a hexa-peri-hexabenzocoronene. , 2003, Journal of the American Chemical Society.

[52]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[53]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[54]  B. W. Erickson,et al.  Photochemical energy conversion in a helical oligoproline assembly. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[55]  E. Giralt,et al.  CD of proline‐rich polypeptides: Application to the study of the repetitive domain of maize glutelin‐2 , 1993, Biopolymers.

[56]  M. Ghadiri,et al.  Design of self-assembling peptide nanotubes with delocalized electronic states. , 2006, Small.

[57]  M. Oka,et al.  On the Stability of Polyproline-I and II Structures of Proline Oligopeptides , 2005 .