Cellular evidence for efference copy in Drosophila visuomotor processing

Each time a locomoting fly turns, the visual image sweeps over the retina and generates a motion stimulus. Classic behavioral experiments suggested that flies use active neural-circuit mechanisms to suppress the perception of self-generated visual motion during intended turns. Direct electrophysiological evidence, however, has been lacking. We found that visual neurons in Drosophila receive motor-related inputs during rapid flight turns. These inputs arrived with a sign and latency appropriate for suppressing each targeted cell's visual response to the turn. Precise measurements of behavioral and neuronal response latencies supported the idea that motor-related inputs to optic flow–processing cells represent internal predictions of the expected visual drive induced by voluntary turns. Motor-related inputs to small object–selective visual neurons could reflect either proprioceptive feedback from the turn or internally generated signals. Our results in Drosophila echo the suppression of visual perception during rapid eye movements in primates, demonstrating common functional principles of sensorimotor processing across phyla.

[1]  Michael H. Dickinson,et al.  Motmot, an open-source toolkit for realtime video acquisition and analysis , 2009, Source Code for Biology and Medicine.

[2]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[3]  C. Bell An efference copy which is modified by reafferent input. , 1981, Science.

[4]  J Palka,et al.  Neural projection patterns from homeotic tissue of Drosophila studied in bithorax mutants and mosaics. , 1979, Developmental biology.

[5]  W P Chan,et al.  Visual input to the efferent control system of a fly's "gyroscope". , 1998, Science.

[6]  T. S. Collett,et al.  Angular tracking and the optomotor response an analysis of visual reflex interaction in a hoverfly , 1980, Journal of comparative physiology.

[7]  H. Krapp,et al.  Visuomotor Transformation in the Fly Gaze Stabilization System , 2008, PLoS biology.

[8]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[9]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[10]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[11]  T. Collett,et al.  How hoverflies compute interception courses , 1978, Journal of comparative physiology.

[12]  Paul D. Barnett,et al.  Insect Detection of Small Targets Moving in Visual Clutter , 2006, PLoS biology.

[13]  Michael H. Dickinson,et al.  Cellular mechanisms for integral feedback in visually guided behavior , 2014, Proceedings of the National Academy of Sciences.

[14]  Greg Wayne,et al.  A temporal basis for predicting the sensory consequences of motor commands in an electric fish , 2014, Nature Neuroscience.

[15]  Michael H. Dickinson,et al.  Body saccades of Drosophila consist of stereotyped banked turns , 2015, The Journal of Experimental Biology.

[16]  Michael H Dickinson,et al.  Spatial organization of visuomotor reflexes in Drosophila , 2004, Journal of Experimental Biology.

[17]  Holger G Krapp,et al.  State-dependent performance of optic-flow processing interneurons. , 2009, Journal of neurophysiology.

[18]  A. Borst,et al.  Active Membrane Properties and Signal Encoding in Graded Potential Neurons , 1998, The Journal of Neuroscience.

[19]  Michael Dickinson,et al.  The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster , 2014, Journal of Experimental Biology.

[20]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[21]  Marie P Suver,et al.  Octopamine Neurons Mediate Flight-Induced Modulation of Visual Processing in Drosophila , 2012, Current Biology.

[22]  Michael H Dickinson,et al.  Active and Passive Antennal Movements during Visually Guided Steering in Flying Drosophila , 2011, The Journal of Neuroscience.

[23]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[24]  D. Burr,et al.  Selective suppression of the magnocellular visual pathway during saccadic eye movements , 1994, Nature.

[25]  Irina Sinakevitch,et al.  Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes , 2007, Developmental neurobiology.

[26]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[27]  Bruce Bridgeman,et al.  Failure to detect displacement of the visual world during saccadic eye movements , 1975, Vision Research.

[28]  Anthony Leonardo,et al.  Internal models direct dragonfly interception steering , 2014, Nature.

[29]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 1979, Journal of comparative physiology.

[30]  Michael H. Dickinson,et al.  A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila , 2008, Current Biology.

[31]  J. Lynch,et al.  Liquid junction potentials and small cell effects in patch-clamp analysis , 1991, The Journal of Membrane Biology.

[32]  Kei Ito,et al.  Optic Glomeruli and Their Inputs in Drosophila Share an Organizational Ground Pattern with the Antennal Lobes , 2012, The Journal of Neuroscience.

[33]  A. Borst Fly visual course control: behaviour, algorithms and circuits , 2014, Nature Reviews Neuroscience.

[34]  HyungGoo R. Kim,et al.  A novel role for visual perspective cues in the neural computation of depth , 2014, Nature Neuroscience.

[35]  Alexander Borst,et al.  Optogenetic Control of Fly Optomotor Responses , 2013, The Journal of Neuroscience.

[36]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[37]  Richard M. Murray,et al.  Discriminating External and Internal Causes for Heading Changes in Freely Flying Drosophila , 2013, PLoS Comput. Biol..

[38]  Kei Ito,et al.  Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula‐specific pathways , 2006, The Journal of comparative neurology.

[39]  Michael H. Dickinson,et al.  Flies Evade Looming Targets by Executing Rapid Visually Directed Banked Turns , 2014, Science.

[40]  B. Webb Neural mechanisms for prediction: do insects have forward models? , 2004, Trends in Neurosciences.

[41]  M. Heisenberg,et al.  Vision in Drosophila , 1984 .

[42]  Martin Egelhaaf,et al.  Dynamic properties of two control systems underlying visually guided turning in house-flies , 1987, Journal of Comparative Physiology A.

[43]  Christopher J. Potter,et al.  A versatile in vivo system for directed dissection of gene expression patterns , 2011, Nature Methods.

[44]  M. Sommer,et al.  Corollary discharge across the animal kingdom , 2008, Nature Reviews Neuroscience.

[45]  D. Briscoe,et al.  A switch phenomenon in the compound eye of the white-eyed mutant of Drosophila melanogaster , 1972 .

[46]  A. Straw,et al.  Contrast sensitivity of insect motion detectors to natural images. , 2008, Journal of vision.

[47]  C. Rowell,et al.  Saccadic suppression by corollary discharge in the locust , 1979, Nature.

[48]  M. Dickinson,et al.  A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster , 2006, Journal of Experimental Biology.

[49]  W L Pak,et al.  Electrophysiological study of Drosophila rhodopsin mutants , 1986, The Journal of general physiology.

[50]  B. Brembs,et al.  Order in Spontaneous Behavior , 2007, PloS one.

[51]  Michael H Dickinson,et al.  Visual stimulation of saccades in magnetically tethered Drosophila , 2006, Journal of Experimental Biology.

[52]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[53]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[54]  Mark A. Frye,et al.  Figure–ground discrimination behavior in Drosophila. II. Visual influences on head movement behavior , 2014, Journal of Experimental Biology.

[55]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[56]  Berthold Hedwig,et al.  The Cellular Basis of a Corollary Discharge , 2006, Science.

[57]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.