Long-time dynamics of Met-enkephalin: comparison of theory with Brownian dynamics simulations.

A recent theory for the long time dynamics of flexible chain molecules is applied for the first time to a peptide of biological importance, the neurotransmitter met-enkephalin. The dynamics of met-enkephalin is considerably more complicated than that of the previously studied glycine oligomers; met-enkephalin contains the interesting motions of phenyl groups and of side chains relative to the backbone, motions that are present in general flexible peptides. The theory extends the generalized Rouse (GR) model used to study the dynamics of polymers by providing a systematic procedure for including the contributions from the memory function matrices neglected in the GR theory. The new method describes the dynamics by time correlation functions instead of individual trajectories. These correlation functions are analytically expressed in terms of a set of equilibrium averages and the eigenvalues and eigenfunctions of the diffusion operator. The predictions of the theory are compared with Brownian dynamics (BD) simulations, so that both theory and simulation use identical potential functions and solvent models. The theory thus contains no adjustable parameters. Inclusion of the memory function contributions profoundly affects the dynamics. The theory produces very good agreement with the BD simulations for the global motions of met-enkephalin. It also correctly predicts the long-time relaxation rate for local motions.

[1]  K. Schulten,et al.  Principal Component Analysis and Long Time Protein Dynamics , 1996 .

[2]  B. Berne,et al.  Large scale simulation of macromolecules in solution: Combining the periodic fast multipole method with multiple time step integrators , 1997 .

[3]  H. Berendsen,et al.  Molecular dynamics simulations of Leu-enkephalin in water and DMSO. , 1997, Biophysical journal.

[4]  K. Freed,et al.  Theory for long time polymer and protein dynamics: Basis functions and time correlation functions , 1995 .

[5]  Juan J. de Pablo,et al.  Continuum-configurational-bias Monte Carlo simulations of long-chain alkanes , 1993 .

[6]  Robert Zwanzig,et al.  Memory Effects in Irreversible Thermodynamics , 1961 .

[7]  Giovanni Lipari,et al.  MODEL-FREE APPROACH TO THE INTERPRETATION OF NUCLEAR MAGNETIC RESONANCE RELAXATION IN MACROMOLECULES. 1. THEORY AND RANGE OF VALIDITY , 1982 .

[8]  G. Fleming,et al.  Picosecond fluorescence studies of polypeptide dynamics: fluorescence anisotropies and lifetimes , 1987 .

[9]  Robert Zwanzig,et al.  Optimized Rouse–Zimm theory for stiff polymers , 1978 .

[10]  H. Metiu,et al.  Hydrodynamic theory for vibrational relaxation in liquids , 1977 .

[11]  A. Perico Segmental relaxation in macromolecules , 1989 .

[12]  K. Freed,et al.  Mode coupling theory for calculating the memory functions of flexible chain molecules: Influence on the long time dynamics of oligoglycines , 1997 .

[13]  Stephen R. Wilson,et al.  Simulated annealing of met-enkephalin: low energy states and their relevance to membrane-bound, solution and solid-state conformations , 1994 .

[14]  J. Swift,et al.  Transport Coefficients near the Liquid-Gas Critical Point , 1968 .

[15]  K. Freed,et al.  Extended rotational isomeric model for describing the long time dynamics of polymers , 1996 .

[16]  A. Falek,et al.  Enkephalins-endorphins: stress and the immune system , 1985 .

[17]  C. Barrow,et al.  Solution structures of beta peptide and its constituent fragments: relation to amyloid deposition. , 1991, Science.

[18]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[19]  G. Lipari Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules , 1982 .

[20]  Y. Hu,et al.  Theory of long time peptide dynamics: Test of various reduced descriptions and role of internal variables , 1991 .

[21]  A. Perico,et al.  Viscoelastic relaxation of segment orientation in dilute polymer solutions , 1985 .

[22]  K. Freed,et al.  Extended molecular dynamics and optimized Rouse–Zimm model studies of a short peptide: Various friction approximations , 1995 .

[23]  R. Zwanzig Theoretical basis for the Rouse‐Zimm model in polymer solution dynamics , 1974 .

[24]  K. Freed,et al.  Positional time correlation function for one‐dimensional systems with barrier crossing: Memory function corrections to the optimized Rouse–Zimm approximation , 1993 .

[25]  Y. Hu,et al.  Polypeptide dynamics: Experimental tests of an optimized RouseZimm type model , 1990 .

[26]  K Wüthrich,et al.  NMR characterization of the full‐length recombinant murine prion protein, mPrP(23–231) , 1997, FEBS letters.

[27]  A. Szabó,et al.  Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity , 1982 .

[28]  A. K. Lala,et al.  A proton magnetic resonance study of the conformation of methionine-enkephalin as a function of pH. , 1977, Biochemistry.

[29]  P E Wright,et al.  Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  V. Daggett,et al.  pH-dependent conformations of the amyloid beta(1-28) peptide fragment explored using molecular dynamics. , 1995, Biochemistry.

[31]  William H. Press,et al.  Numerical recipes , 1990 .

[32]  Kyozi Kawasaki,et al.  Kinetic equations and time correlation functions of critical fluctuations , 1970 .

[33]  Lorna J. Smith,et al.  NMR and protein dynamics , 1996 .

[34]  S. Whittington,et al.  Mode coupling description of dynamics in dilute polymer solutions , 1976 .

[35]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[36]  A. Perico,et al.  Maximum-Correlation Mode-Coupling Approach to the Smoluchowski Dynamics of Polymers , 1997 .

[37]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[38]  K. Freed,et al.  Mode coupling theory for calculating the memory functions of flexible polymers: Local dynamics of oligoglycines , 1998 .

[39]  Herman J. C. Berendsen,et al.  ALGORITHMS FOR BROWNIAN DYNAMICS , 1982 .

[40]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[41]  Tobin R. Sosnick,et al.  The role of helix formation in the folding of a fully α‐helical coiled coil , 1996 .

[42]  T. Schlick,et al.  The Langevin/implicit‐Euler/normal‐mode scheme for molecular dynamics at large time steps , 1994 .

[43]  K. Freed,et al.  Test of theory for long time dynamics of floppy molecules in solution using Brownian dynamics simulation of octane , 1993 .

[44]  Hagai Meirovitch,et al.  A free energy based Monte Carlo minimization procedure for biomolecules , 1994 .

[45]  C. Deber,et al.  Evidence for a folded conformation of methionine- and leucine-enkephalin in a membrane environment. , 1984, The Journal of biological chemistry.