Relativistic quantum defect orbital calculations of singlet–singlet transitions in the zinc and cadmium isoelectronic sequences

Relativistic quantum defect orbital (RQDO) calculations, with and without explicit account for corevalence correlation, have been performed on several electron transitions in the zinc and cadmium isoelectronic sequences, which are of interest in astrophysics and fusion plasma research. A comparative study with other theoretical results and experimental measurements has also been carried out. © 1993 John Wiley & Sons, Inc.

[1]  Huang,et al.  Resonance transitions of Zn-like ions from the multiconfiguration relativistic random-phase approximation. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[2]  C. Laughlin On the accuracy of the Coulomb approximation and a model-potential method for atomic transition probabilities in alkali-like systems , 1992 .

[3]  J. Karwowski,et al.  Quantum defect orbitals and the Dirac second-order equation , 1991 .

[4]  C. Barrientos,et al.  Theoretical study of transitions involving three rydberg series in two‐valence electron systems: MgI and its electronic sequence , 1990 .

[5]  F. A. Parpia,et al.  GRASP: A general-purpose relativistic atomic structure program , 1989 .

[6]  É. Biémont,et al.  Energy levels and transition probabilities along the zinc isoelectronic sequence , 1989 .

[7]  I. Martinson The spectroscopy of highly ionised atoms , 1989 .

[8]  J. Wyart,et al.  Identification of n = 4, ?n = 0 transitions in the spectra of nickel-like and zinc-like ions through tin , 1988 .

[9]  J. Migdalek,et al.  Relativistic CI calculations for the ns2 1S0-nsnp 3P1, 1P1 transitions in the cadmium and mercury isoelectronic sequences , 1988 .

[10]  B. Saoutic,et al.  Highly ionized xenon spectra (95-260 Å) excited in TFR tokamak plasmas , 1988 .

[11]  V. Kaufman,et al.  In i isoelectronic sequence: wavelengths and energy levels for Xe vi through La ix , 1987 .

[12]  L. J. Curtis Bengt Edlén's Handbuch der Physik Article - 26 Years Later , 1987 .

[13]  W. Ansbacher,et al.  Oscillator-strength measurements for the resonance transitions in Te v, Xe vii, and Xe viii , 1987 .

[14]  W. Ansbacher,et al.  Beam-foil measurements of lifetimes of energy levels belonging to Sn III and Sn IV , 1987 .

[15]  W. Ansbacher,et al.  Cascade-corrected lifetime measurements for singly and doubly ionized indium , 1986 .

[16]  Y. N. Joshi,et al.  Revised and Extended Analyses of Se V and Br VI , 1986 .

[17]  W. E. Baylis,et al.  Relativistic oscillator strengths and excitation energies for the ns2 1S0-nsnp 3P1, 1P1 transitions. II. Cadmium isoelectronic sequence , 1985 .

[18]  W. Ansbacher,et al.  Beam-foil lifetime measurements for tellurium ions belonging to the Ag i and Cd i isoelectronic sequences , 1985 .

[19]  J. Reader,et al.  4s/sup 2/ /sup 1/S/sub 0/-4s4p/sup 1/P/sub 1/ transitions in zinclike ions , 1984 .

[20]  W. R. Taylor,et al.  Oscillator strengths and wavelengths for the copper and zinc isoelectronic sequences; Z = 29 to 42 , 1983 .

[21]  A. Hibbert Transitions in the cadmium sequence , 1982 .

[22]  J. A. Kernahan,et al.  Beam-foil spectroscopy of Se IV, V, and VI , 1982 .

[23]  J. Karwowski,et al.  Core polarisation and relativistic effects in the alkali atoms , 1981 .

[24]  P. Ramanujam,et al.  Measurements of 4s4p 1P lifetimes in the Zn i isoelectronic sequence: Ga ii, Ge iii, As iv , 1979 .

[25]  R. L. Brooks,et al.  A Study of the Beam-Foil Spectrum of lodine from 400 to 1300 A , 1979 .

[26]  A. Vinogradov,et al.  Static Dipole Polarizability of Atoms and Ions in the Thomas-Fermi Model , 1979 .

[27]  W. Wiese,et al.  Systematic trends for the oscillator strengths of resonance transitions in the Cu and Zn isoelectronic sequences , 1978 .

[28]  C. Fischer,et al.  Theoretical oscillator strengths for the resonance transitions in the Zn I isoelectronic sequence , 1978 .

[29]  A. Dalgarno,et al.  Relativistic random-phase approximation calculations on the zinc isoelectronic sequence , 1977 .

[30]  J. Reader,et al.  4s-4p Resonance Transitions in Highly Charged Cu- and Zn-like Ions , 1977 .

[31]  E. Knystautas,et al.  Oscillator strengths of resonance lines in Br(VI), (VII) and Kr(VII), (VIII) , 1977 .

[32]  J. A. Kernahan,et al.  Beam-foil spectroscopy of bromine from 450 to 1000 A: Erratum , 1977 .

[33]  A. E. Livingston,et al.  Beam-foil mean-life measurements in krypton , 1976 .

[34]  I. Martín,et al.  New procedure for generating valence and Rydberg orbitals , 1976 .

[35]  J. Buchet,et al.  Beam-foil study of krypton between 400 and 800 Angstroms , 1976 .

[36]  E. H. Pinnington Beam-Foil Spectroscopy at the University of Alberta , 1976 .

[37]  Serafin Fraga,et al.  Handbook of atomic data , 1976 .

[38]  I. Martín,et al.  New procedure for generating valence and Rydberg orbitals. II. Atomic photoionization cross sections , 1975 .

[39]  R. Abjean,et al.  Mesure des forces d'oscillateur par absorption dans un jet atomique—II. force d'oscillateur de la transition 1P1-1S0 du zinc (λ = 2139 Å) , 1975 .

[40]  G. Simons New procedure for generating valence and Rydberg orbitals. I. Atomic oscillator strengths , 1974 .

[41]  G. Sorensen,et al.  Systematic trends in atomic transition probabilities in neutral and singly-ionized zinc, cadmium and mercury , 1973 .

[42]  G. Sorensen Atomic Lifetimes of Low-Lying Levels in Multiply Charged Ions of Gallium, Germanium, Arsenic, and Selenium , 1973 .

[43]  A. Dalgarno,et al.  Model potential calculations of lithium transitions. , 1972 .

[44]  G. Sorensen,et al.  A Systematic Study of Atomic Lifetimes of Levels Belonging to the Ag I, Cd I, Au I, and Hg I Isoelectronic Sequences , 1972 .

[45]  A. Dalgarno,et al.  Pseudo-potential calculation of atomic interactions , 1970 .

[46]  William H. Smith,et al.  Atomic transition probabilities - Ultraviolet multiplets of Zn I, II and Cd I, II , 1970 .

[47]  M. James,et al.  Core polarization corrections to oscillator strengths in the alkali atoms , 1968 .

[48]  W. Wiese,et al.  REGULARITIES IN ATOMIC OSCILLATOR STRENGTHS , 1968 .