Transgenic Pigeonpea [Cajanus cajan (L). Millsp.]

[1]  P. Kharb,et al.  Psp68, A Dead Box Helicase Confers Salinity Tolerance in Transgenic Pigeon Pea , 2019, International Journal of Current Microbiology and Applied Sciences.

[2]  Shweta Singh,et al.  Molecular Interaction-Based Exploration of the Broad Spectrum Efficacy of a Bacillus thuringiensis Insecticidal Chimeric Protein, Cry1AcF , 2019, Toxins.

[3]  R. Varshney,et al.  Pigeonpea improvement: An amalgam of breeding and genomic research , 2018, Plant Breeding.

[4]  P. Kumar,et al.  Expression of Cry2Aa, a Bacillus thuringiensis insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer, Helicoverpa armigera , 2018, Scientific Reports.

[5]  Zahra Rahneshan,et al.  Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks , 2018 .

[6]  R. Sreevathsa Apical Meristem-Targeted In Planta Transformation Strategy: an Overview on its Utility in Crop Improvement , 2017 .

[7]  M. Sheshshayee,et al.  Overexpression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annuum L.) , 2017, Scientific Reports.

[8]  A. Purohit,et al.  Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera , 2017, Plant Cell Reports.

[9]  Q. Ali,et al.  Crop Improvement: New Approaches and Modern Techniques , 2017 .

[10]  Y. Chung,et al.  Overexpression of AtSZF2 from Arabidopsis Showed Enhanced Tolerance to Salt Stress in Soybean , 2017 .

[11]  L. Leamy,et al.  Back into the wild—Apply untapped genetic diversity of wild relatives for crop improvement , 2016, Evolutionary applications.

[12]  M. Soberón,et al.  Insecticidal Proteins from Bacillus thuringiensis and Their Mechanism of Action , 2017 .

[13]  Smriti Sharma,et al.  Pod borer resistant transgenic pigeon pea (Cajanus cajan L.) expressing cry1Ac transgene generated through simplified Agrobacterium transformation of pricked embryo axes , 2016, Plant Cell, Tissue and Organ Culture (PCTOC).

[14]  R. Sreevathsa,et al.  Development of transgenic pigeonpea (Cajanus cajan. L Millsp) overexpressing citrate synthase gene for high phosphorus uptake. , 2016, Indian journal of experimental biology.

[15]  S. Fan,et al.  Corrigendum: Overexpression of an Apocynum venetum DEAD-Box Helicase Gene (AvDH1) in Cotton Confers Salinity Tolerance and Increases Yield in a Saline Field , 2016, Front. Plant Sci..

[16]  S. Fan,et al.  Overexpression of an Apocynum venetum DEAD-Box Helicase Gene (AvDH1) in Cotton Confers Salinity Tolerance and Increases Yield in a Saline Field , 2016, Front. Plant Sci..

[17]  N. Tuteja,et al.  OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). , 2013, The Plant journal : for cell and molecular biology.

[18]  P. B. Kavi Kishor,et al.  Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance , 2013, Plant Cell, Tissue and Organ Culture (PCTOC).

[19]  S. Datta,et al.  Conventional and Molecular Approaches towards Genetic Improvement in Pigeonpea for Insects Resistance , 2013 .

[20]  Renu,et al.  Proline Accumulation in Transgenic Tobacco as a Result of Expression of Arabidopsis Δ1-Pyrroline-5-carboxylate synthetase (P5CS) During Osmotic Stress , 2013, Journal of Plant Biochemistry and Biotechnology.

[21]  S. Ramu,et al.  Expression of a synthetic cry1AcF gene in transgenic Pigeon pea confers resistance to Helicoverpa armigera , 2012 .

[22]  Adity Gupta,et al.  Transgenic indica Rice cv IR-50 Over-expressing Vigna aconitifolia Δ1-Pyrroline -5- Carboxylate Synthetase cDNA Shows Tolerance to High Salt , 2003, Journal of Plant Biochemistry and Biotechnology.

[23]  P. Kumar,et al.  Genetic Engineering of Insect-Resistant Crop Plants with Bacillus thuringiensis Crystal Protein Genes , 2012, Journal of Plant Biochemistry and Biotechnology.

[24]  R. Sreevathsa,et al.  Overexpression of phytochelatin synthase (AtPCS) in rice for tolerance to cadmium stress , 2011, Biologia.

[25]  Patrick Linder,et al.  From unwinding to clamping — the DEAD box RNA helicase family , 2011, Nature Reviews Molecular Cell Biology.

[26]  A. Kumar,et al.  Agrobacterium-Mediated In Planta Transformation of Field Bean (Lablab purpureus L.) and Recovery of Stable Transgenic Plants Expressing the cry1AcF Gene , 2011, Plant Molecular Biology Reporter.

[27]  R. Sreevathsa,et al.  Amenability of castor to an Agrobacterium-mediated in planta transformation strategy using a cry1AcF gene for insect tolerance , 2011, Journal of Crop Science and Biotechnology.

[28]  K. Rao,et al.  Tissue Culture-independent In Planta Transformation Strategy: an Agrobacterium tumefaciens-Mediated Gene Transfer Method to Overcome Recalcitrance in Cotton (Gossypium hirsutum L.) , 2008 .

[29]  R. Sreevathsa,et al.  In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro , 2008, Physiology and Molecular Biology of Plants.

[30]  A. Kumar,et al.  In planta transformation strategy to generate transgenic plants in chickpea: proof of concept with a cry gene , 2008 .

[31]  M. Jacobs,et al.  Increasing lysine levels in pigeonpea (Cajanus cajan (L.) Millsp) seeds through genetic engineering , 2007, Plant Cell, Tissue and Organ Culture.

[32]  K. Sharma,et al.  Agrobacterium-mediated production of transgenic pigeonpea (Cajanus cajan L. Millsp.) expressing the synthetic BT cry1Ab gene , 2006, In Vitro Cellular & Developmental Biology - Plant.

[33]  C. Surekha,et al.  Differential response of Cajanus cajan varieties to transformation with different strains of agrobacterium. , 2007 .

[34]  D. D. Kulkarni,et al.  Genotype-Dependent morphogenetic potentiality of various explants of a food legume, the pigeon pea (Cajanus cajan L.) , 2007, In Vitro Cellular & Developmental Biology - Plant.

[35]  P. Kirti,et al.  Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Millsp.) using embryonal segments and development of transgenic plants for resistance against Spodoptera , 2005 .

[36]  Fusuo Zhang,et al.  Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system , 2005 .

[37]  K. Sharma,et al.  Genetic transformation of pigeonpea with rice chitinase gene , 2004 .

[38]  K. Sharma,et al.  Agrobacterium tumefaciens mediated genetic transformation of pigeonpea , 2004 .

[39]  K. Krishnamurthy,et al.  Plant Regeneration from Decapitated Mature Embryo Axis and Agrobacterium Mediated Genetic Transformation of Pigeonpea , 2003, Biologia Plantarum.

[40]  A. Mandaokar,et al.  Insect-resistant transgenic brinjal plants , 1998, Molecular Breeding.

[41]  G. Galili,et al.  Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase , 1996, Plant Molecular Biology.

[42]  S. Eapen,et al.  Organogenesis and embryogenesis from diverse explants in pigeonpea (Cajanus cajan L.) , 1994, Plant Cell Reports.

[43]  G. Galili,et al.  Regulation of lysine synthesis in transgenic potato plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts , 1992, Plant Molecular Biology.

[44]  Sanjaya,et al.  Expression of biologically active Hemagglutinin-neuraminidase protein of Peste des petits ruminants virus in transgenic pigeonpea [Cajanus cajan (L) Millsp.] , 2004 .

[45]  K. Sharma,et al.  Agrobacterium tumefaciens Mediated Genetic Transformation of Pigeonpea [Cajanus cajan (L.) Millsp.] , 2004 .

[46]  R. Sairam,et al.  PHYSIOLOGY AND MOLECULAR BIOLOGY OF SALINITY STRESS TOLERANCE IN PLANTS , 2004 .

[47]  V. Frankard,et al.  Metabolic engineering of a complex biochemical pathway: The lysine and threonine biosynthesis as an example , 2004, Phytochemistry Reviews.

[48]  K. Sharma,et al.  An efficient protocol for shoot regeneration and genetic transformation of pigeonpea [Cajanus cajan (L.) Millsp.] using leaf explants , 2003, Plant Cell Reports.

[49]  D. Somers,et al.  Recent Advances in Legume Transformation , 2003, Plant Physiology.

[50]  A. Khandelwal,et al.  Expression of hemagglutinin protein of Rinderpest virus in transgenic pigeon pea [Cajanus cajan (L.) Millsp.] plants , 2003, Plant Cell Reports.

[51]  A. Shelton,et al.  Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins , 2002, Theoretical and Applied Genetics.

[52]  K. Saxena,et al.  Pigeonpea nutrition and its improvement. , 2002 .

[53]  P. Mohanty,et al.  MOLECULAR MECHANISMS OF QUENCHING OF REACTIVE OXYGEN SPECIES BY PROLINE UNDER STRESS IN PLANTS , 2002 .

[54]  V. Rohini,et al.  Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. , 2001, Plant science : an international journal of experimental plant biology.

[55]  D. Weigel,et al.  Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. , 2000, The Plant journal : for cell and molecular biology.

[56]  Z. W. Shappley,et al.  Bollgard II efficacy: quantification of total lepidopteran activity in a 2-gene product. , 2000 .

[57]  V. Rohini,et al.  Gene Transfer into Indian Cultivars of Safflower (Carthamus tinctorius L.) using Agrobacterium tumefaciens , 1999 .

[58]  N. Geetha,et al.  Agrobacterium-mediated Genetic Transformation of Pigeonpea (Cajanus cajan L. ) and Development of Transgenic Plants via Direct Organogenesis , 1999 .

[59]  K. Rao,et al.  Agrobacterium-mediated Transformation of Sunflower (Helianthus annuusL.): A Simple Protocol , 1999 .

[60]  R. V. Ramchandar Studies on the genetic transformation of pigeonpea by biolistic and Agrobactierium-mediated gene transfer , 1999 .

[61]  T. Shanower,et al.  Insect pests of pigeonpea and their management. , 1999, Annual review of entomology.

[62]  N. Geetha,et al.  High frequency induction of multiple shoots and plant regeneration from seedling explants of pigeonpea (Cajanus cajan l.) , 1998 .

[63]  T. Shanower,et al.  Biology and management of Melanagromyza obtusa (Malloch) (Diptera:Agromyzidae) , 1998 .

[64]  A. Mandaokar,et al.  SYNERGISTIC EFFECT OF CRY1AC AND CRY1F DELTA -ENDOTOXONS OF BACILLUS THURINGIENSIS ON COTTON BOLLWORM, HELICOVERPA ARMIGERA , 1998 .

[65]  M. Ghislain,et al.  A dinucleotide mutation in dihydrodipicolinate synthase of Nicotiana sylvestris leads to lysine overproduction. , 1995, The Plant journal : for cell and molecular biology.

[66]  S. C. Falco,et al.  Transgenic Canola and Soybean Seeds with Increased Lysine , 1995, Bio/Technology.

[67]  A. Peter,et al.  The role of plant trichomes in insect resistance: a selective review , 1995 .

[68]  G. Galili,et al.  Lysine synthesis and catabolism are coordinately regulated during tobacco seed development. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[69]  U. Singh,et al.  Nutritional quality evaluation of newly developed high‐protein genotypes of pigeonpea (Cajanus cajan) , 1990 .

[70]  S. Tripathi,et al.  Effect of Different Pulses on Development, Growth and Reproduction of Heliothis armigera (Hubner) (Lepidoptera:Noctuidae) , 1989 .

[71]  Gary P. Fitt,et al.  The Ecology of Heliothis Species in Relation to Agroecosystems , 1989 .

[72]  D. K. Salunkhe,et al.  Pigeonpea as an important food source. , 1986, Critical reviews in food science and nutrition.

[73]  B. Eggum,et al.  Factors affecting the protein quality of pigeonpea (Cajanus cajan L.) , 1984 .