Time-reversal symmetry breaking in frustrated superconductor Re2Hf

[1]  M. H. Fischer,et al.  Chiral superconductivity in the alternate stacking compound 4Hb-TaS2 , 2019, Science Advances.

[2]  Hyunsoo Kim,et al.  Self-Consistent Two-Gap Description of MgB2 Superconductor , 2019, Symmetry.

[3]  Yangmu Li,et al.  Hole pocket–driven superconductivity and its universal features in the electron-doped cuprates , 2018, Science Advances.

[4]  Masatoshi Sato,et al.  Topological superconductors: a review , 2016, Reports on progress in physics. Physical Society.

[5]  T. Das,et al.  Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family , 2013, Scientific Reports.

[6]  M. Blakeley,et al.  Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt3 , 2014, Science.

[7]  A. Bansil,et al.  Intermediate coupling model of the cuprates , 2014, 1407.5722.

[8]  Dung-Hai Lee,et al.  Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity , 2013, Proceedings of the National Academy of Sciences.

[9]  B. Wilson,et al.  Time-reversal-symmetry-broken state in the BCS formalism for a multi-band superconductor , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  A. Chubukov Pairing mechanism in Fe-based superconductors , 2011, 1110.0052.

[11]  T. Yanagisawa,et al.  Chiral state in three-gap superconductors , 2010 .

[12]  D. J. Scalapino,et al.  Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides , 2008, 0812.0343.

[13]  Z. Wang,et al.  Spin fluctuations, interband coupling and unconventional pairing in iron-based superconductors , 2008, 0804.4166.

[14]  H.Nakamura,et al.  Time-Reversal Symmetry Breaking Superconductivity in Sr2RuO4 , 1998, cond-mat/9808159.

[15]  E. Szklarz,et al.  Superconductivity and lattice parameters of the dirhenides and ditechnides of thorium, hafnium, and zirconium. [ThReâ, ThTeâ, HfReâ, HfTcâ, ZrTeâ, ZrReâ] , 1970 .