Contrasting Climate Ensembles: A Model-Based Visualization Approach for Analyzing Extreme Events

Abstract The use of increasingly sophisticated means to simulate and observe natural phenomena has led to the production of larger and more complex data. As the size and complexity of this data increases, the task of data analysis becomes more challeng- ing. Determining complex relationships among variables requires new algorithm development. Addressing the challenge of handling large data necessitates that algorithm implementations target high performance computing platforms. In this work we present a technique that allows a user to study the interactions among multiple variables in the same spatial extents as the underlying data. The technique is implemented in an existing parallel analysis and visualization framework in order that it be applicable to the largest datasets. The foundation of our approach is to classify data points via inclusion in, or distance to, multivariate representations of relationships among a subset of the variables of a dataset. We abstract the space in which inclusion is calculated and through various space transformations we alleviate the necessity to consider variables’ scales and distributions when making comparisons. We apply this approach to the problem of highlighting variations in climate model ensembles.

[1]  Joe Michael Kniss,et al.  Gaussian transfer functions for multi-field volume visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[2]  Gordon L. Kindlmann,et al.  Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering , 1998, VVS.

[3]  Pak Chung Wong,et al.  Multivariate Visualization with Data Fusion , 2002, Inf. Vis..

[4]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[5]  Ross T. Whitaker,et al.  Curvature-based transfer functions for direct volume rendering: methods and applications , 2003, IEEE Visualization, 2003. VIS 2003..

[6]  Gerik Scheuermann,et al.  Multifield visualization using local statistical complexity , 2007, IEEE Transactions on Visualization and Computer Graphics.

[7]  John Shalf,et al.  Query-driven visualization of large data sets , 2005, VIS 05. IEEE Visualization, 2005..

[8]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[9]  D. Stephenson,et al.  Higher precision estimates of regional polar warming by ensemble regression of climate model projections , 2012, Climate Dynamics.

[10]  Ivan Viola,et al.  Importance-driven volume rendering , 2004, IEEE Visualization 2004.

[11]  Kwan-Liu Ma,et al.  Importance-Driven Time-Varying Data Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  Henk A. Dijkstra,et al.  Assessing climate model projections: State of the art and philosophical reflections , 2012 .

[13]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[14]  Valerio Pascucci,et al.  Visual Exploration of High Dimensional Scalar Functions , 2010, IEEE Transactions on Visualization and Computer Graphics.

[15]  R. Ibragimov,et al.  Copula Estimation , 2009 .

[16]  Helwig Hauser,et al.  Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data , 2003, VisSym.

[17]  Ted Mihalisin,et al.  Visualization and analysis of multi-variate data: a technique for all fields , 1991, Proceeding Visualization '91.

[18]  Reto Knutti,et al.  Challenges in Combining Projections from Multiple Climate Models , 2010 .

[19]  Charles Doutriaux,et al.  Performance metrics for climate models , 2008 .

[20]  Jian Huang,et al.  Simplified parallel domain traversal , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[21]  James P. Ahrens,et al.  Scout: a hardware-accelerated system for quantitatively driven visualization and analysis , 2004, IEEE Visualization 2004.

[22]  David S. Ebert,et al.  Structuring Feature Space: A Non-Parametric Method for Volumetric Transfer Function Generation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[23]  Hong Zhou,et al.  Scattering Points in Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[24]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[25]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[26]  Eugene Zhang,et al.  Visualization of Diversity in Large Multivariate Data Sets , 2010, IEEE Transactions on Visualization and Computer Graphics.

[27]  Nelson L. Max,et al.  A contract based system for large data visualization , 2005, VIS 05. IEEE Visualization, 2005..

[28]  Pak Chung Wong,et al.  30 Years of Multidimensional Multivariate Visualization , 1994, Scientific Visualization.

[29]  Richard L. Smith,et al.  Quantifying Uncertainty in Projections of Regional Climate Change: A Bayesian Approach to the Analysis of Multimodel Ensembles , 2005 .

[30]  Peter E. Thornton,et al.  Results from the Carbon-Land Model Intercomparison Project (C-LAMP) , 2007 .

[31]  Richard Washington,et al.  Issues in the interpretation of climate model ensembles to inform decisions , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Matthew O. Ward,et al.  Exploring N-dimensional databases , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[33]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[34]  Stephan R. Sain,et al.  Assessing variance components of general circulation model output fields , 2012 .

[35]  Chris Hewitt,et al.  Ensembles-based predictions of climate changes and their impacts , 2004 .

[36]  I-Iaim Levkowit Color Icons : Merging Color and Texture Perception for Integrated Visualization of Multiple Parameters , 2004 .