Existence of solutions to a higher dimensional mean-field equation on manifolds

[1]  L. Martinazzi,et al.  Asymptotics and Quantization for a Mean-Field Equation of Higher Order , 2009, 0904.3290.

[2]  F. Marchis Multiplicity Result for a Scalar Field Equation on Compact Surfaces , 2008 .

[3]  L. Martinazzi Concentration–compactness phenomena in the higher order Liouville's equation☆ , 2008, 0809.2172.

[4]  N. Krylov,et al.  Elliptic and Parabolic Second-Order PDEs with Growing Coefficients , 2008, 0806.3100.

[5]  Z. Djadli EXISTENCE RESULT FOR THE MEAN FIELD PROBLEM ON RIEMANN SURFACES OF ALL GENUSES , 2008 .

[6]  L. Martinazzi Classification of solutions to the higher order Liouville’s equation on $${\mathbb{R}^{2m}}$$ , 2008, 0801.2729.

[7]  A. Malchiodi Morse theory and a scalar field equation on compact surfaces , 2008, Advances in Differential Equations.

[8]  C. B. Ndiaye Constant Q-curvature metrics in arbitrary dimension , 2007 .

[9]  Adimurthi,et al.  CONCENTRATION PHENOMENA FOR LIOUVILLE'S EQUATION IN DIMENSION FOUR , 2006 .

[10]  Olivier Druet,et al.  Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth , 2005 .

[11]  A. Malchiodi Compactness of solutions to some geometric fourth-order equations , 2004, math/0410140.

[12]  J. Jost,et al.  Existence results for mean field equations , 1997, dg-ga/9710023.

[13]  L. Fontana Sharp borderline Sobolev inequalities on compact Riemannian manifolds , 1993 .

[14]  M. Struwe Critical points of embeddings of H01,n into Orlicz spaces , 1988 .

[15]  D. Adams A sharp inequality of J. Moser for higher order derivatives , 1988 .

[16]  Michael Struwe,et al.  The existence of surfaces of constant mean curvature with free boundaries , 1988 .

[17]  L. Martinazzi,et al.  Classification of solutions to the higher order Liouville ’ s equation on R 2 m , 2009 .

[18]  Michael Struwe,et al.  On multivortex solutions in Chern-Simons gauge theory , 1998 .

[19]  Haim Brezis,et al.  Uniform estimates and blow–up behavior for solutions of −δ(u)=v(x)eu in two dimensions , 1991 .