Scalable uncertainty and reliability analysis by integration of advanced Monte Carlo simulation and generic finite element solvers

This contribution describes how the uncertainty associated with structures can be modeled and analyzed, in context with state-of-the-art FE software and modern computing infrastructure. Uncertainty modeling with high-dimensional random variables and random fields motivates the adoption of advanced Monte Carlo methods for reliability analysis. On the implementation side, object-orientation and parallelization have been embraced to ensure flexibility and performance. A novel, Matlab-based toolkit, COSSAN-X, embodying these characteristics, is presented. The application to a satellite under harmonic excitation and a turbine blade under centrifugal loading indicates the importance of considering spatial fluctuations and the scalability with respect to realistic FE models.

[1]  Manolis Papadrakakis,et al.  Parallel solution techniques in computational structural mechanics , 1997 .

[2]  Helmut J. Pradlwarter,et al.  Computational stochastic structural analysis (COSSAN) – a software tool , 2006 .

[3]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[4]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .

[5]  Masanobu Shinozuka,et al.  Response Variability of Stochastic Finite Element Systems , 1988 .

[6]  Helmut J. Pradlwarter,et al.  Relative importance of uncertain structural parameters. Part II: applications , 2007 .

[7]  Robert M. O'Bara,et al.  Toward simulation-based design , 2004 .

[8]  Bernhard Thomaszewski,et al.  Parallel techniques for physically based simulation on multi-core processor architectures , 2008, Comput. Graph..

[9]  Peter Wriggers,et al.  A PARALLEL ALGEBRAIC MULTIGRID SOLVER FOR PROBLEMS IN SOLID MECHANICS DISCRETISIZED BY FINITE ELEMENTS , 1998 .

[10]  Gerhart I. Schuëller,et al.  Einführung in die Sicherheit und Zuverlässigkeit von Tragwerken , 1981 .

[11]  H. Pradlwarter Relative importance of uncertain structural parameters. Part I: algorithm , 2007 .

[12]  Christoph-Hermann Richter Structural design of modern steam turbine blades using ADINA , 2003 .

[13]  Elisa D. Sotelino,et al.  PARALLEL PROCESSING TECHNIQUES IN STRUCTURAL ENGINEERING APPLICATIONS , 2003 .

[14]  G. Schuëller,et al.  A critical appraisal of methods to determine failure probabilities , 1987 .

[15]  Lucjan Witek,et al.  Failure analysis of turbine disc of an aero engine , 2006 .

[16]  Per Stenström The Paradigm Shift to Multi-Cores: Opportunities and Challenges , 2007 .

[17]  Lambros S. Katafygiotis,et al.  Wedge simulation method for calculating the reliability of linear dynamical systems , 2004 .

[18]  M. Grigoriu Stochastic Calculus: Applications in Science and Engineering , 2002 .

[19]  D. V. Griffiths,et al.  Programming the finite element method , 1982 .

[20]  Michel Loève,et al.  Probability Theory I , 1977 .

[21]  Michał Kleiber,et al.  The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .

[22]  J. Beck,et al.  Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .

[23]  H. Matthies,et al.  Hierarchical parallelisation for the solution of stochastic finite element equations , 2005 .

[24]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[25]  Leonard E. Schwer,et al.  An overview of the PTC 60/V&V 10: guide for verification and validation in computational solid mechanics , 2007, Engineering with Computers.

[26]  Charbel Farhat,et al.  Automatic partitioning of unstructured meshes for the parallel solution of problems in computational mechanics , 1993 .

[27]  G. Schuëller A state-of-the-art report on computational stochastic mechanics , 1997 .

[28]  Michael Creel,et al.  User-Friendly Parallel Computations with Econometric Examples , 2005 .

[29]  G. Schuëller,et al.  Chair of Engineering Mechanics Ifm-publication 2-374 a Critical Appraisal of Reliability Estimation Procedures for High Dimensions , 2022 .

[30]  Wilson H. Tang,et al.  Probability concepts in engineering planning and design , 1984 .

[31]  Georgios E. Stavroulakis,et al.  Modelling prestress restoration of buildings by general purpose structural analysis and optimization software, the optimization module of MSC/NASTRAN , 1997 .

[32]  M. F. Pellissetti,et al.  Parallel processing in structural reliability , 2009 .

[33]  S. H. Crandall Perturbation Techniques for Random Vibration of Nonlinear Systems , 1963 .

[34]  Manolis Papadrakakis,et al.  Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation , 1999 .

[35]  G. I. Schuëller,et al.  Benchmark Study on Reliability Estimation in Higher Dimensions of Structural Systems – An Overview , 2007 .

[36]  Helmut J. Pradlwarter,et al.  Non-stationary response of large linear FE models under stochastic loading , 2003 .

[37]  Charbel Farhat,et al.  Time‐parallel implicit integrators for the near‐real‐time prediction of linear structural dynamic responses , 2006 .

[38]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[39]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[40]  Petr Krysl,et al.  Parallel explicit finite element solid dynamics with domain decomposition and message passing: dual partitioning scalability , 2001 .

[41]  Christian A. Schenk,et al.  Uncertainty assessment of large finite element systems , 2005 .

[42]  Gerhart I. Schuëller,et al.  An efficient reliability-based optimization scheme for uncertain linear systems subject to general Gaussian excitation , 2008 .

[43]  G. I. Schuëller,et al.  On general purpose software in structural reliability ¿ An overview , 2006 .

[44]  Henrik O. Madsen,et al.  Structural Reliability Methods , 1996 .

[45]  Anthony Skjellum,et al.  A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard , 1996, Parallel Comput..

[46]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[47]  Dimos C. Charmpis,et al.  The need for linking micromechanics of materials with stochastic finite elements: A challenge for materials science , 2007 .

[48]  Hans-Joachim Bungartz,et al.  A Framework for Embedded Structural Simulation: Benefits in Building Design , 2006 .

[49]  J. Z. Zhu,et al.  The finite element method , 1977 .

[50]  Subrata Chakraborty,et al.  A stochastic finite element dynamic analysis of structures with uncertain parameters , 1998 .