Motion planning with sequential convex optimization and convex collision checking

We present a new optimization-based approach for robotic motion planning among obstacles. Like CHOMP (Covariant Hamiltonian Optimization for Motion Planning), our algorithm can be used to find collision-free trajectories from naïve, straight-line initializations that might be in collision. At the core of our approach are (a) a sequential convex optimization procedure, which penalizes collisions with a hinge loss and increases the penalty coefficients in an outer loop as necessary, and (b) an efficient formulation of the no-collisions constraint that directly considers continuous-time safety Our algorithm is implemented in a software package called TrajOpt. We report results from a series of experiments comparing TrajOpt with CHOMP and randomized planners from OMPL, with regard to planning time and path quality. We consider motion planning for 7 DOF robot arms, 18 DOF full-body robots, statically stable walking motion for the 34 DOF Atlas humanoid robot, and physical experiments with the 18 DOF PR2. We also apply TrajOpt to plan curvature-constrained steerable needle trajectories in the SE(3) configuration space and multiple non-intersecting curved channels within 3D-printed implants for intracavitary brachytherapy. Details, videos, and source code are freely available at: http://rll.berkeley.edu/trajopt/ijrr.

[1]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[2]  S. Sathiya Keerthi,et al.  A fast procedure for computing the distance between complex objects in three-dimensional space , 1988, IEEE J. Robotics Autom..

[3]  Charles W. Warren,et al.  Global path planning using artificial potential fields , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[4]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[5]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[6]  Oussama Khatib,et al.  Elastic bands: connecting path planning and control , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[7]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[8]  H. Sussmann Shortest 3-dimensional paths with a prescribed curvature bound , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[9]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[10]  Paolo Cignoni,et al.  A comparison of mesh simplification algorithms , 1998, Comput. Graph..

[11]  C. Mészáros The BPMPD interior point solver for convex quadratic problems , 1999 .

[12]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[13]  R. Taschereau,et al.  Seed misplacement and stabilizing needles in transperineal permanent prostate implants. , 2000, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[14]  Gino van den Bergen Proximity Queries and Penetration Depth Computation on 3D Game Objects , 2001 .

[15]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[16]  Vikram Kapila,et al.  Optimal path planning for unmanned air vehicles with kinematic and tactical constraints , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[17]  Vijay R. Kumar,et al.  Euclidean metrics for motion generation on SE(3) , 2002 .

[18]  Sebastian Thrun,et al.  ARA*: Anytime A* with Provable Bounds on Sub-Optimality , 2003, NIPS.

[19]  O. Brock,et al.  Elastic Strips: A Framework for Motion Generation in Human Environments , 2002, Int. J. Robotics Res..

[20]  Nancy M. Amato,et al.  Approximate convex decomposition of polyhedra , 2004, Symposium on Solid and Physical Modeling.

[21]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[22]  Christer Ericson,et al.  Real-Time Collision Detection , 2004 .

[23]  Florent Lamiraux,et al.  Reactive path deformation for nonholonomic mobile robots , 2004, IEEE Transactions on Robotics.

[24]  Christer Ericson,et al.  Real-Time Collision Detection (The Morgan Kaufmann Series in Interactive 3-D Technology) (The Morgan Kaufmann Series in Interactive 3D Technology) , 2004 .

[25]  Munther A. Dahleh,et al.  Maneuver-based motion planning for nonlinear systems with symmetries , 2005, IEEE Transactions on Robotics.

[26]  Jin Seob Kim,et al.  Nonholonomic Modeling of Needle Steering , 2006, Int. J. Robotics Res..

[27]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[28]  M. Shanmugavel,et al.  3D Path Planning for Multiple UAVs Using Pythagorean Hodograph Curves , 2007 .

[29]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[30]  Takeo Kanade,et al.  Efficient Two-phase 3D Motion Planning for Small Fixed-wing UAVs , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[31]  D. Minhas,et al.  Modeling of Needle Steering via Duty-Cycled Spinning , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[32]  Thierry Siméon,et al.  The Stochastic Motion Roadmap: A Sampling Framework for Planning with Markov Motion Uncertainty , 2007, Robotics: Science and Systems.

[33]  S. Shankar Sastry,et al.  Screw-based motion planning for bevel-tip flexible needles in 3D environments with obstacles , 2008, 2008 IEEE International Conference on Robotics and Automation.

[34]  D. Thalmann,et al.  Planning collision-free reaching motions for interactive object manipulation and grasping , 2008, SIGGRAPH '08.

[35]  Anthony Stentz,et al.  R* Search , 2008, AAAI.

[36]  Lydia E. Kavraki,et al.  Kinodynamic Motion Planning by Interior-Exterior Cell Exploration , 2008, WAFR.

[37]  Kenneth Y. Goldberg,et al.  Motion planning for steerable needles in 3D environments with obstacles using rapidly-exploring Random Trees and backchaining , 2008, 2008 IEEE International Conference on Automation Science and Engineering.

[38]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[39]  Siddhartha S. Srinivasa,et al.  CHOMP: Gradient optimization techniques for efficient motion planning , 2009, 2009 IEEE International Conference on Robotics and Automation.

[40]  J. Adam M. Cunha,et al.  Planning fireworks trajectories for steerable medical needles to reduce patient trauma , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Faouzi Ghorbel,et al.  A simple and efficient approach for 3D mesh approximate convex decomposition , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[42]  Victor Ng-Thow-Hing,et al.  Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts , 2010, 2010 IEEE International Conference on Robotics and Automation.

[43]  Ron Alterovitz,et al.  Interactive motion planning for steerable needles in 3D environments with obstacles , 2010, 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[44]  Salah Sukkarieh,et al.  An Analytical Continuous-Curvature Path-Smoothing Algorithm , 2010, IEEE Transactions on Robotics.

[45]  D. Minhas,et al.  Percutaneous Intracerebral Navigation by Duty-Cycled Spinning of Flexible Bevel-Tipped Needles , 2010, Neurosurgery.

[46]  Hugh F. Durrant-Whyte,et al.  Using Lie Group Symmetries for Fast Corrective Motion Planning , 2010, WAFR.

[47]  S. Shankar Sastry,et al.  Three-dimensional Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics , 2010, Int. J. Robotics Res..

[48]  Quang-Cuong Pham Fast Trajectory Correction for Nonholonomic Mobile Robots using Affine Transformations , 2011, Robotics: Science and Systems.

[49]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[50]  Stefan Schaal,et al.  STOMP: Stochastic trajectory optimization for motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[51]  Kyle B. Reed,et al.  Robot-Assisted Needle Steering , 2011, IEEE Robotics & Automation Magazine.

[52]  Siddhartha S. Srinivasa,et al.  Manipulation planning with goal sets using constrained trajectory optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[53]  Moritz Diehl,et al.  An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range , 2011, Autom..

[54]  Gerd Hirzinger,et al.  Trajectory planning for optimal robot catching in real-time , 2011, 2011 IEEE International Conference on Robotics and Automation.

[55]  Dinesh Manocha,et al.  Collision-free and smooth trajectory computation in cluttered environments , 2012, Int. J. Robotics Res..

[56]  Noah J. Cowan,et al.  Torsional dynamics compensation enhances robotic control of tip-steerable needles , 2012, 2012 IEEE International Conference on Robotics and Automation.

[57]  Emanuel Todorov,et al.  Trajectory optimization for domains with contacts using inverse dynamics , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[58]  Sachin Chitta,et al.  MoveIt! [ROS Topics] , 2012, IEEE Robotics Autom. Mag..

[59]  Jose Luis Blanco,et al.  A tutorial on SE(3) transformation parameterizations and on-manifold optimization , 2012 .

[60]  Alexander Werner,et al.  Optimization-based generation and experimental validation of optimal walking trajectories for biped robots , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[61]  Yuval Tassa,et al.  Synthesis and stabilization of complex behaviors through online trajectory optimization , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[62]  Sachin Chitta,et al.  A generic infrastructure for benchmarking motion planners , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[63]  Zoran Popovic,et al.  Discovery of complex behaviors through contact-invariant optimization , 2012, ACM Trans. Graph..

[64]  Russ Tedrake,et al.  Direct Trajectory Optimization of Rigid Body Dynamical Systems through Contact , 2012, WAFR.

[65]  Chonhyon Park,et al.  ITOMP: Incremental Trajectory Optimization for Real-Time Replanning in Dynamic Environments , 2012, ICAPS.

[66]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[67]  Srinath V. Ekkad,et al.  Gas Turbine Heat Transfer and Cooling Technology , 2012 .

[68]  A. Kelly,et al.  Differentially constrained motion planning with state lattice motion primitives , 2012 .

[69]  J. Adam M. Cunha,et al.  An algorithm for computing customized 3D printed implants with curvature constrained channels for enhancing intracavitary brachytherapy radiation delivery , 2013, 2013 IEEE International Conference on Automation Science and Engineering (CASE).

[70]  John Hauser,et al.  Optimal Control on Lie Groups: The Projection Operator Approach , 2013, IEEE Transactions on Automatic Control.

[71]  Philippe Poignet,et al.  Robot-assisted automatic insertion of steerable needles with closed-loop imaging feedback and intraoperative trajectory replanning , 2013 .

[72]  Pieter Abbeel,et al.  Finding Locally Optimal, Collision-Free Trajectories with Sequential Convex Optimization , 2013, Robotics: Science and Systems.

[73]  Eiichi Yoshida,et al.  Generation of whole-body optimal dynamic multi-contact motions , 2013, Int. J. Robotics Res..

[74]  Siddhartha S. Srinivasa,et al.  CHOMP: Covariant Hamiltonian optimization for motion planning , 2013, Int. J. Robotics Res..

[75]  Robert J. Webster,et al.  Needle Steering in 3-D Via Rapid Replanning , 2014, IEEE Transactions on Robotics.

[76]  Allison M. Okamura,et al.  Design and evaluation of duty-cycling steering algorithms for robotically-driven steerable needles , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).