Progress in electron- and ion-interferometry
暂无分享,去创建一个
[1] E. Purcell,et al. The Question of Correlation between Photons in Coherent Light Rays , 1956, Nature.
[2] The quantum mechanics of particle-correlation measurements in high-energy heavy-ion collisions , 1999, nucl-th/9903053.
[3] Y. Aharonov,et al. Quantum aspects of the equivalence principle , 1973 .
[4] Horváthy. Observability of 2 pi rotations around an Aharonov-Bohm solenoid. , 1985, Physical review. A, General physics.
[5] G. Stedman,et al. Ring-laser tests of fundamental physics and geophysics , 1997 .
[6] L. Marton,et al. Electron beam interferometer , 1953 .
[7] M. Kasevich,et al. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope. , 2005, Physical Review Letters.
[8] W. Bayh. Messung der kontinuierlichen Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische Vektorpotential einer Wolfram-Wendel , 1962 .
[9] Carnal,et al. Young's double-slit experiment with atoms: A simple atom interferometer. , 1991, Physical review letters.
[10] H. Rauch. NEUTRON INTERFEROMETRIC TESTS OF QUANTUM MECHANICS , 1986 .
[11] Mark P. Silverman. More Than One Mystery , 1994 .
[12] T. Ishikawa,et al. Coherent and intense multibeam generation by the apex of sharp nano-objects: Electron half-circular prism , 2007 .
[13] M. Laue. Zum Versuch von F. Harreß , 1920 .
[14] J. Spence,et al. The brightest beam in science: New directions in electron microscopy and interferometry , 1995 .
[15] Francesco Petruccione,et al. The Theory of Open Quantum Systems , 2002 .
[16] Comparison of the Hanbury Brown–Twiss effect for bosons and fermions , 2006, Nature.
[17] O. Stern,et al. Beugung von Molekularstrahlen , 1930 .
[18] M. Scully,et al. The ring laser gyro , 1985 .
[19] J. Komrska. Scalar Diffraction Theory in Electron Optics , 1971 .
[20] W. Elsasser. Bemerkungen zur Quantenmechanik freier Elektronen , 1925, Naturwissenschaften.
[21] E. Varoquaux,et al. Josephson Effect and Phase Slippage in Superfluids , 1987 .
[22] Wierzbicki,et al. Atomic resolution in lensless low-energy electron holography. , 1991, Physical review letters.
[23] Grigorii B. Malykin,et al. The Sagnac effect: correct and incorrect explanations , 2000 .
[24] J. Komrska,et al. Justification of the Model for Electron Interference Produced by an Electrostatic Biprism , 1973 .
[25] J. C. Hafele. Reply to Schlegel , 1971 .
[26] G. Möllenstedt,et al. Fresnelscher Interferenzversuch mit einem Biprisma für Elektronenwellen , 2004, Naturwissenschaften.
[27] J. Spence,et al. Aberrations of emission cathodes: Nanometer diameter field-emission electron sources , 1993 .
[28] P. Morin,et al. Charge effect in point projection images of carbon fibres , 2000, Journal of microscopy.
[29] H. Rauch. Die Quantenmechanik auf dem Prüfstand der Neutroneninterferometrie , 1985 .
[30] K. Schreiber,et al. On the detectability of the Lense–Thirring field from rotating laboratory masses using ring laser gyroscope interferometers , 2003 .
[31] Raymond Hill,et al. An Introduction to the Helium Ion Microscope , 2006, Microscopy Today.
[32] J. Zimmerman,et al. Compton Wavelength of Superconducting Electrons , 1965 .
[33] Albert Einstein,et al. Zum gegenwärtigen Stand des Strahlungsproblems , 1909 .
[34] Mlynek,et al. Loss of spatial coherence by a single spontaneous emission. , 1994, Physical review letters.
[35] E. Varoquaux,et al. Detection of the earth rotation with a superfluid double-hole resonator , 1996 .
[36] C. Davisson,et al. The Scattering of Electrons by a Single Crystal of Nickel , 1927, Nature.
[37] G. Rempe,et al. Fringe Visibility and Which-Way Information in an Atom Interferometer , 1998 .
[38] Yamada,et al. Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. , 1986, Physical review letters.
[39] Russell D. Young,et al. The Topografiner: An Instrument for Measuring Surface Microtopography , 1972 .
[40] J. Komrska,et al. Intensity Distributions in Electron Interference Phenomena Produced by an Electrostatic Bi-prism , 1967 .
[41] B. Yurke. Interferometry with correlated fermions , 1988 .
[42] W. Ehrenberg,et al. The Refractive Index in Electron Optics and the Principles of Dynamics , 1949 .
[43] T. Madey,et al. Faceting of tungsten(111) induced by ultrathin palladium films , 1991 .
[44] K. Jousten,et al. Development of a high-brightness gas field-ionization source , 1988 .
[45] A. Michelson. LXXII. Relative motion of earth and æther , 1904 .
[46] S Gupta,et al. Bose-Einstein condensation in a circular waveguide. , 2005, Physical review letters.
[47] J. Spence,et al. Brightness measurements of nanometer-sized field-emission-electron sources , 1993 .
[48] J. W. Gadzuk. Many-body tunneling-theory approach to field emission of electrons from solids , 1969 .
[49] P. I. Lukirsky. XXXVII. On soft X-Rays from carbon (Preliminary communication.) , 1924 .
[50] A V Crewe,et al. A scanning microscope with 5 A resolution. , 1970, Journal of molecular biology.
[51] Tai Tsun Wu,et al. Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields , 1975 .
[52] G. Möllenstedt,et al. Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen , 1956 .
[53] Joseph Samuel,et al. THE AHARONOV-BOHM EFFECT , 1994 .
[54] Hasselbach,et al. Sagnac experiment with electrons: Observation of the rotational phase shift of electron waves in vacuum. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[55] Albert A. Michelson,et al. XXXVIII. On the application of interference-methods to spectroscopic measurements.—I , 1891 .
[56] R. H. Brown,et al. Interferometry of the intensity fluctuations in light. II. An experimental test of the theory for partially coherent light , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[57] E. Polatdemir,et al. Measurement of tunneling time via electron interferometry , 2004 .
[58] E. Varoquaux,et al. Rotation measurements with a superfluid 3He gyrometer , 2000 .
[59] K. Böhringer,et al. Current-voltage characteristics of a gas field ion source with a supertip , 1990 .
[60] P. Sonnentag,et al. Measurement of decoherence of electron waves and visualization of the quantum-classical transition. , 2007, Physical review letters.
[61] D. Kobe. Aharonov-Bohm effect revisited☆ , 1979 .
[62] Ford. Electromagnetic vacuum fluctuations and electron coherence. , 1993, Physical Review D, Particles and fields.
[63] L. Mandel,et al. Coherence and indistinguishability. , 1991, Optics letters.
[64] G. Möllenstedt,et al. Messung der kontinuierlichen Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische vektorpotential einer Luftspule , 2004, Naturwissenschaften.
[65] M. E. Haine,et al. THE APPLICATION AND LIMITATIONS OF THE EDGE-DIFFRACTION TEST FOR ASTIGMATISM IN THE ELECTRON MICROSCOPE , 1954 .
[66] Erkki J. Brändas,et al. Decoherence and the Appearance of a Classical World in Quantum Theory : E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch and I.-O Stamatescu, Springer-Verlag, New York, 2003 , 2004 .
[67] Avenel,et al. Observation of singly quantized dissipation events obeying the Josephson frequency relation in the critical flow of superfluid 4He through an aperture. , 1985, Physical review letters.
[68] Herzog,et al. Complementarity and the quantum eraser. , 1995, Physical review letters.
[69] Y. Gohda,et al. Ab initio calculations of field emission from ultrathin Si(100) films , 2003 .
[70] Kiesel,et al. Visibility spectroscopy with electron waves using a Wien filter: higher order corrections , 2000, Micron.
[71] I. Stamatescu,et al. BOOK REVIEW: Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .
[72] H. Boersch,et al. Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen , 1954 .
[73] P. Schwoebel,et al. Localized field ion emission using adsorbed hydrogen films on 〈110〉‐oriented tungsten field emitters , 1984 .
[74] R. Colella,et al. Experimental test of gravitationally induced quantum interference , 1974 .
[75] D. Dieks,et al. Relativistic aspects of nonrelativistic quantum mechanics , 1990 .
[76] Yamamoto,et al. Hologram simulation for off-axis electron holography , 2000, Ultramicroscopy.
[77] R. Becker,et al. Über die Stromverteilung in einer supraleitenden Kugel , 1933 .
[78] T. Amakusa,et al. Low-temperature field emission system for development of ultracoherent electron beams , 2004 .
[79] J. Steinhauer,et al. The a.c. and d.c. Josephson effects in a Bose–Einstein condensate , 2007, Nature.
[80] J. Simpson. Electron Interference Experiments , 1956 .
[81] A. Miffre,et al. Atom interferometry , 2006, quant-ph/0605055.
[82] K. Harada,et al. Triple-biprism electron interferometry , 2006 .
[83] L. Reimer,et al. Scanning Electron Microscopy , 1984 .
[84] R. Glauber,et al. Amplifiers, Attenuators, and Schrödinger's Cat a , 1986 .
[85] Pertti Hakonen,et al. Detection of the rotation of the earth with a superfluid gyrometer , 1997 .
[86] P. Sonnentag,et al. Decoherence of electron waves due to induced charges moving through a nearby resistive material , 2005 .
[87] Claus Jönsson,et al. Electron Diffraction at Multiple Slits , 1974 .
[88] Andreas Renz,et al. Observation of Hanbury Brown–Twiss anticorrelations for free electrons , 2002, Nature.
[89] John F. Clauser,et al. Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry☆ , 1988 .
[90] Mark D. Semon,et al. New Techniques and Ideas in Quantum Measurement Theory , 1988 .
[91] G. Pozzi,et al. On the statistical aspect of electron interference phenomena , 1976 .
[92] C. Oshima,et al. Monochromatic electron emission from the macroscopic quantum state of a superconductor , 1998, Nature.
[93] W. Schleich. Quantum physics: Engineering decoherence , 2000, Nature.
[94] H. Rohrer,et al. Coherent electron beams and sources , 1989 .
[95] R. H. Brown,et al. Correlation between Photons in two Coherent Beams of Light , 1956, Nature.
[96] T. Gustavson,et al. Rotation sensing with a dual atom-interferometer Sagnac gyroscope , 2000 .
[97] D. Joy,et al. Transmission and Reflection Holography at Low Energies , 2004 .
[98] M. Alouani,et al. Interband absorption in aluminium under pressure , 1986 .
[99] M. Kasevich,et al. Testing general relativity with atom interferometry. , 2006, Physical review letters.
[101] K. Jousten,et al. Growth and current characteristics of stable protrusions on tungsten field ion emitters , 1988 .
[102] J. Jones,et al. The sharpening of field emitter tips by ion sputtering , 1971 .
[103] F. Hasselbach. Experiments with Coherent Electron Wave Packets , 1995 .
[104] C. Wilbertz,et al. Field-ion imaging of a tungsten supertip , 1995 .
[105] A Modification to Gabor's Proposed Diffraction Microscope , 1950, Nature.
[106] F. Hasselbach. A ruggedized miniature UHV electron biprism interferometer for new fundamental experiments and applications , 1988 .
[107] C. Monroe,et al. Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.
[108] R. Salmelin,et al. Phase slippage in superfluid 3He-B , 1992 .
[109] Niels de Jonge,et al. Carbon nanotube electron sources and applications , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[110] Holland,et al. The fermionic hanbury brown and twiss experiment , 1999, Science.
[111] R. Buhl. Interferenzmikroskopie mit Elektronenwellen , 1959 .
[112] B. M. Siegel,et al. Oxygen‐Processed Field Emission Source , 1972 .
[113] S. Olariu,et al. The quantum effects of electromagnetic fluxes , 1985 .
[114] Lang,et al. New Evidence for Localized Electronic States on Atomically Sharp Field Emitters. , 1996, Physical review letters.
[115] H. R. Bilger,et al. ``Sagnac'' effect: A century of Earth-rotated interferometers , 1994 .
[116] V. Binh,et al. On the electron and metallic ion emission from nanotips fabricated by field-surface-melting technique: experiments on W and Au tips , 1992 .
[117] Anton Zeilinger,et al. Collisional decoherence observed in matter wave interferometry. , 2003, Physical review letters.
[118] J. Cavaillé,et al. Surface self-diffusion by ion impact , 1978 .
[119] G. Möllenstedt,et al. Elektronenholographie und Rekonstruktion mit Laserlicht , 1968, Naturwissenschaften.
[120] W. Zurek. Reduction of the Wavepacket: How Long Does it Take? , 2003, quant-ph/0302044.
[121] Atom interferometer as a selective sensor of rotation or gravity , 2006, physics/0604082.
[122] Second-order temporal and spatial coherence of thermal electrons , 1987 .
[123] J. Spence,et al. On the reconstruction of low voltage point projection holograms , 1995 .
[124] D. Kern,et al. Oxygen processed field emission tips for microcolumn applications , 1993 .
[125] J. J. Sakurai. Comments on Quantum Mechanical Interference Due to the Earth's Rotation , 1980 .
[126] Hans-Werner Fink,et al. Point source for ions and electrons , 1988 .
[127] A. V. Crewe,et al. Electron Gun Using a Field Emission Source , 1968 .
[128] M. Nicklaus,et al. An electron optical sagnac experiment , 1988 .
[129] David J. Smith,et al. Reconstruction technique for off-axis electron holography using coarse fringes. , 2006, Ultramicroscopy.
[130] J. Spence,et al. Experimental low-voltage point-projection microscopy and its possibilities , 1993 .
[131] Friedrich W. Hehl,et al. On the gravitational effects of rotating masses: The Thirring-Lense papers , 1984 .
[132] Spence,et al. Transmission-electron Fourier imaging of crystal lattices using low-voltage field-emission sources: Theory. , 1992, Physical review. B, Condensed matter.
[133] H. Boersch,et al. Antiparallele Weische Bereiche als Biprisma fr Elektroneninterferenzen , 1960 .
[134] J. Anandan. New relativistic gravitational effects using charged-particle interferometry , 1984 .
[135] An apparatus for high resolution field emission spectroscopy , 1997 .
[136] C. Oshima,et al. Field emission spectroscopy from field-enhanced diffusion-growth nano-tips , 2001 .
[137] W. Schleich,et al. Quantum gyroscopes and Gödel's universe: entanglement opens a new testing ground for cosmology , 2002 .
[138] N. Robins,et al. A Pumped Atom Laser , 2007, 0711.4418.
[139] Hasselbach,et al. Wien filter: A wave-packet-shifting device for restoring longitudinal coherence in charged-matter-wave interferometers. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[140] T. Matsuda,et al. Electron Microholography by Two-Beam Method , 1970 .
[141] G. Goldhaber,et al. Influence of Bose-Einstein Statistics on the Antiproton-Proton Annihilation Process , 1960 .
[142] Yasuda,et al. Observation of Two-Atom Correlation of an Ultracold Neon Atomic Beam. , 1996, Physical review letters.
[143] K. Harada,et al. High-resolution observation by double-biprism electron holography , 2004 .
[144] Fink,et al. Holography with low-energy electrons. , 1990, Physical review letters.
[145] J. C. Hafele,et al. Around-the-World Atomic Clocks: Predicted Relativistic Time Gains , 1972, Science.
[146] L. A. Page. Effect of Earth's Rotation in Neutron Interferometry , 1975 .
[147] H. Itoh,et al. Energy spectra of field emission electrons from a W〈310〉 tip , 1996 .
[148] W. Zurek. Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.
[149] S. P. Chen. Theoretical studies of ultrathin film-induced faceting on W(111) surfaces , 1992 .
[150] J. Spence,et al. Electron source brightness and degeneracy from Fresnel fringes in field emission point projection microscopy , 1994 .
[151] K. Schwab,et al. Detection of the Earth's rotation using superfluid phase coherence , 1997, Nature.
[152] A V Crewe,et al. Visibility of Single Atoms , 1970, Science.
[153] Theory of which path dephasing in single electron interference due to trace in conductive environment , 2005, quant-ph/0511022.
[154] J. Arthur,et al. Neutron Phase Shift in a Rotating Two-Crystal Interferometer , 1984 .
[155] J. Lynn,et al. Neutron Interferometry: Lessons in Experimental Quantum Mechanics , 2002 .
[157] Purcell,et al. Field-emission electron spectroscopy of single-atom tips. , 1992, Physical review letters.
[158] Kazuo Yamamoto,et al. Evaluation of high‐precision phase‐shifting electron holography by using hologram simulation , 2003 .
[159] H. Zeh. On the interpretation of measurement in quantum theory , 1970 .
[160] J. Notte,et al. Applications of the Helium Ion Microscope , 2007, Microscopy Today.
[161] U. Bonse,et al. Test of a single crystal neutron interferometer , 1974 .
[162] A. Zettl,et al. Carbon Nanotube Electrostatic Biprism: Principle of Operation and Proof of Concept , 2004, Microscopy and Microanalysis.
[163] Tsuyoshi Matsuda,et al. Demonstration of single‐electron buildup of an interference pattern , 1989 .
[164] Y. Horiike,et al. Young's interference of electrons in field emission patterns. , 2002, Physical review letters.
[165] A. G. Klein,et al. Longitudinal coherence in neutron interferometry , 1983 .
[166] T. Gustavson,et al. Precision Rotation Measurements with an Atom Interferometer Gyroscope , 1997 .
[167] Yamamoto,et al. Hanbury brown and twiss-type experiment with electrons , 1999, Science.
[168] D. Gabor. IV Light and Information , 1961 .
[169] Akira Tonomura,et al. The Quantum World Unveiled by Electron Waves , 1998 .
[170] K. Harada,et al. Double-biprism electron interferometry , 2004 .
[171] S. A. Werner,et al. Observation of Gravitationally Induced Quantum Interference , 1975 .
[172] U. Bonse,et al. AN X‐RAY INTERFEROMETER , 1965 .
[173] B. M. Siegel,et al. H2 and rare gas field ion source with high angular current , 1979 .
[174] I. Bloch,et al. Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice , 2006, Nature.
[175] Pieter Kruit,et al. Field emission energy distributions from individual multiwalled carbon nanotubes , 1999 .
[176] J. Spence,et al. Electron optical properties of nanometer field emission electron sources , 1993 .
[177] A V Crewe. REVIEW ARTICLE: The physics of the high-resolution scanning microscope , 1980 .
[178] Yamamoto,et al. High precision phase-shifting electron holography , 2001, Journal of electron microscopy.
[179] E. Merzbacher,et al. Single Valuedness of Wave Functions , 1962 .
[180] J. C. Hafele. Relativistic Behaviour of Moving Terrestrial Clocks , 1970, Nature.
[181] I. Stamatescu,et al. Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .
[182] Ing-Shouh Hwang,et al. Preparation and Characterization of Single-Atom Tips , 2004 .
[183] A. Michelson. XXVIII. Visibility of interference-fringes in the focus of a telescope , 1891 .
[184] E. Müller,et al. Resolution of the Atomic Structure of a Metal Surface by the Field Ion Microscope , 1956 .
[185] Akira Tonomura,et al. Applications of electron holography , 1987 .
[186] The Sagnac Phase Shift Suggested by the Aharonov-Bohm Effect for Relativistic Matter Beams , 2003, gr-qc/0305046.
[187] B. Cho,et al. Extreme high vacuum field emission microscope for study on the inherent fluctuation of field emission , 2007 .
[188] J. Lense,et al. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie , 1918 .
[189] D. Greenberger. The neutron interferometer as a device for illustrating the strange behavior of quantum systems , 1983 .
[190] Packard,et al. Principles of superfluid-helium gyroscopes. , 1992, Physical review. B, Condensed matter.
[191] Mark D. Semon. Experimental verification of an Aharonov-Bohm effect in rotating reference frames , 1982 .
[192] D. Gabor. Microscopy by reconstructed wave-fronts , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[193] T. Hoang,et al. Space structure of a fireball and the pion radius , 1982 .
[194] Record number (11 000) of interference fringes obtained by a 1 MV field-emission electron microscope , 2002 .
[195] J. C. Hafele,et al. Around-the-World Atomic Clocks: Observed Relativistic Time Gains , 1972, Science.
[196] F. Hasselbach. Recent Contributions of Electron Interferometry to Wave—Particle Duality , 1992 .
[197] P. Hakonen,et al. Superfluid Gyrometers: Present State and Future Prospects , 1998 .
[198] T. Tsong,et al. Noble Metal/W(111) Single-Atom Tips and Their Field Electron and Ion Emission Characteristics , 2006 .
[199] M. Silverman. On the feasibility of observing electron antibunching in a field-emission beam , 1987 .
[200] R. H. Brown,et al. The Question of Correlation between Photons in Coherent Light Rays , 1956, Nature.
[201] A quantum mechanical twin paradox , 1990 .
[202] T. R. Fox,et al. Scanning transmission ion microscope with a field ion source. , 1975, Proceedings of the National Academy of Sciences of the United States of America.
[203] A. Zeilinger. Complementarity in neutron interferometry , 1986 .
[204] Hans Thirring,et al. ber die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. , 1918 .
[205] D. Greenberger,et al. Coherence effects in neutron diffraction and gravity experiments , 1979 .
[206] R. Neutze,et al. Sagnac experiment with electrons: Reanalysis of a rotationally induced phase shift for charged particles , 1998 .
[207] Kenneth M. Watson,et al. Use of intensity correlations to determine the phase of a scattering amplitude , 1963 .
[208] G. B. Malykin. Earlier studies of the Sagnac effect , 1997 .
[209] L. Marton,et al. An Electron Interferometer , 1954 .
[210] J. Leavitt,et al. Single-Slit Diffraction Pattern of a Thermal Atomic Potassium Beam , 1969 .
[211] T. Tsong,et al. Method of creating a Pd-covered single-atom sharp W pyramidal tip: Mechanism and energetics of its formation , 2001 .
[212] D. Gabor. A New Microscopic Principle , 1948, Nature.
[213] T. Madey,et al. Faceting induced by ultrathin metal films: structure, electronic properties and reactivity , 1999 .
[214] R. Chambers. Shift of an electron interference pattern by enclosed magnetic flux , 1960 .
[215] K. Bohringer,et al. LETTER TO THE EDITOR: Long time current stability of a gas field ion source with a supertip , 1988 .
[216] C. Chan,et al. Faceting Induced by Ultrathin Metal Films: A First Principles Study , 1997 .
[217] J. Anandan. Gravitational and rotational effects in quantum interference , 1977 .
[218] D. DeBra,et al. Gravity Probe B: Countdown to Launch , 2001 .
[219] W. Zurek. Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse? , 1981 .
[220] G. Rempe,et al. Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer , 1998, Nature.
[221] H-W Fink. Mono-atomic tips for scanning tunneling microscopy , 1986, IBM J. Res. Dev..
[222] C. Jönsson,et al. Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten , 1961 .
[223] M. Silverman. New quantum effect of confined magnetic flux on electrons , 1986 .
[224] F. Riehle,et al. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. , 1991, Physical review letters.
[225] Birk,et al. Shot-Noise Suppression in the Single-Electron Tunneling Regime. , 1995, Physical review letters.
[226] R. Twiss,et al. The Detection of Time-correlated Photons by a Coincidence Counter , 1959 .
[227] Albert A. Michelson,et al. The Effect of the Earth's Rotation on the Velocity of Light, II. , 1925 .
[228] J. Simmons. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .
[229] P. Harzer. Über die Mitführung des Lichtes in Glas und die Aberration , 1914 .
[230] K. Harada,et al. Optical system for double-biprism electron holography. , 2005, Journal of electron microscopy.
[231] R. Colella,et al. EFFECT OF EARTH'S ROTATION ON THE QUANTUM MECHANICAL PHASE OF THE NEUTRON , 1979 .
[232] P. Schwoebel,et al. Beam current stability from localized emission sites in a field ion source , 1985 .
[233] E. W. Müller. Weitere Beobachtungen mit dem Feldelektronenmikroskop , 1938 .
[234] A. F. Hildebrandt. Magnetic Field of a Rotating Superconductor , 1964 .
[235] J. Simpson. The Theory of the Three-Crystal Electron Interferometer , 1954 .
[236] Watanabe,et al. Self-consistent density functional calculation of field emission currents from metals , 2000, Physical review letters.
[237] Keith,et al. An interferometer for atoms. , 1991, Physical review letters.
[238] Quantum-related reference frames and the local physical significance of potentials , 1974 .
[239] A. G. Klein,et al. Neutron optics , 1983 .
[240] B. Englert,et al. Fringe Visibility and Which-Way Information: An Inequality. , 1996, Physical review letters.
[241] F. Shimizu. Interferometry with Metastable Rare Gas Atoms , 1997 .
[242] J. C. Hafele. Relativistic Time for Terrestrial Circumnavigations , 1972 .
[243] John C. H. Spence,et al. STEM and shadow-imaging of biomolecules at 6 eV beam energy , 1997 .
[244] R. Shimizu,et al. Quantitative evaluation of spatial coherence of the electron beam from low temperature field emitters. , 2004, Physical review letters.
[245] Heinz Schmid,et al. In‐line holography using low‐energy electrons and photons: Applications for manipulation on a nanometer scale , 1995 .
[246] A. V. Crewe,et al. A High‐Resolution Scanning Transmission Electron Microscope , 1968 .
[247] U. Bonse,et al. Measurement of neutron quantum interference in noninertial frames , 1983 .
[248] L. Mandel. V Fluctuations of Light Beams , 1963 .
[249] W. M. Powell,et al. Pion-Pion Correlations in Antiproton Annihilation Events , 1959 .
[250] J. Spence. Convergent-beam nano-diffraction, in-line holography and coherent shadow imaging , 1992 .
[251] R. Alicki,et al. Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .
[252] G. Möllenstedt,et al. Elektroneninterferometrische Messung des inneren Potentials , 1957 .
[253] givenName surName,et al. Interferometry of the intensity fluctuations in light - I. Basic theory: the correlation between photons in coherent beams of radiation , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[254] T. Tsong,et al. Field emission spectra of single-atom tips with thermodynamically stable structures , 2008 .
[255] D. Bohm,et al. Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .
[256] G. Möllenstedt,et al. Kontinuierliche Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische Vektorpotential eines Solenoids , 1962 .
[257] Jonathan P. Dowling,et al. CORRELATED INPUT-PORT, MATTER-WAVE INTERFEROMETER : QUANTUM-NOISE LIMITS TO THE ATOM-LASER GYROSCOPE , 1998 .
[258] G. Pozzi,et al. Electron interferometry and interference electron microscopy , 1981 .
[259] William K. Wootters,et al. Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr's principle , 1979 .
[260] N. Bartelt,et al. Thermodynamics of Surface Morphology , 1991, Science.
[261] Dreyer,et al. Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.
[262] S. Kalbitzer,et al. Energy spread of a focused ion beam system with a supertip , 1993 .
[263] Anton Zeilinger,et al. Decoherence of matter waves by thermal emission of radiation , 2004, Nature.
[264] V. Binh,et al. Nanometric observations at low energy by Fresnel projection microscopy: carbon and polymer fibres , 1995 .
[265] R. H. Brown,et al. A New type of interferometer for use in radio astronomy , 1954 .
[266] S. Vitale,et al. Superfluid /sup 4/He analog of the rf superconducting quantum interference device and the detection of inertial and gravitational fields , 1984 .
[267] J. Schmiedmayer,et al. Wave aspects of electron and ion emission from point sources , 1990 .