Progress in electron- and ion-interferometry

In the 1970s the prominent goal was to overcome the limitations of electron microscopy caused by aberrations of electron lenses by the development of electron holography. In the meantime this problem has been solved, not only in the roundabout way of holography, but directly by correcting the aberrations of the lenses. Nevertheless, many quantitative electron microscopical measurement methods?e.g. mapping and visualization of electric and magnetic fields?were developed within the context of holography and have become fields of their own. In this review we focus on less popular electron interferometric experiments which complement the field of electron holography. The paper is organized as follows. After a short sketch of the development of electron biprism interferometry after its invention in 1954, recent advances in technology are discussed that made electron biprism interferometry an indispensable tool for solving fundamental and applied questions in physics: the development and preparation of conventional and single-atom field electron and field ion sources with their extraordinary properties. Single- and few-atom sources exhibit spectacular features: their brightness at 100?keV exceeds that of conventional field emitters by two orders in magnitude. Due to the extremely small aberrations of diode field emitter extraction optics, the virtual source size of single-atom tips is on the order of 0.2?nm. As a consequence it illuminates an area 7?cm in diameter on a screen at a distance of 15?cm coherently. Projection electron micrographs taken with these sources reach spatial resolutions of atomic dimensions and in-line holograms are?due to the absence of lenses with their aberrations?not blurred. Their reconstruction is straightforward. By addition of a carbon nanotube biprism into the beam path of a projection microscope a lensless electron interferometer has been realized. In extremely ultrahigh vacuum systems flicker noise is practically absent in the new sources. In the context of holography, methods have been developed to record holograms without modulation of the biprism fringes by waves diffracted at the edges of the biprism filament. This simplifies the reconstruction of holograms and the evaluation of interferograms (taken, e.g. to extract a spectrum by Fourier analysis of the fringe system) significantly. A major section is devoted to the influence of electromagnetic and gravito-inertial potentials and fields on the quantum mechanical phase of matter waves: the Aharonov?Bohm effect, the inertial Aharonov?Bohm effect and its realization, the Sagnac effect and Sagnac experiments with atoms, superfluid helium, Bose?Einstein condensates, electrons and ions and their potential as rotation sensors are discussed. M?llenstedt and Wohland discovered in a crossed beam analyzer (Wien filter) an optical element for charged particles that shifts wave packets longitudinally that transverse a Wien filter on laterally separated paths. This new optical element rendered it possible to measure coherence lengths and the spectrum of charged particle waves by visibility- and Fourier-spectroscopy, to perform a 'Welcher Weg' experiment, to re-establish seemingly lost longitudinal coherence in an interferometer for charged particles and to realize a decoherence free quantum eraser. A precision test of decoherence according to a proposal from Anglin and Zurek and biprism interferences with helium atoms close the section on first-order coherence experiments. The topics of the last section are Hanbury Brown?Twiss correlations and an antibuching experiment of free electrons.

[1]  E. Purcell,et al.  The Question of Correlation between Photons in Coherent Light Rays , 1956, Nature.

[2]  The quantum mechanics of particle-correlation measurements in high-energy heavy-ion collisions , 1999, nucl-th/9903053.

[3]  Y. Aharonov,et al.  Quantum aspects of the equivalence principle , 1973 .

[4]  Horváthy Observability of 2 pi rotations around an Aharonov-Bohm solenoid. , 1985, Physical review. A, General physics.

[5]  G. Stedman,et al.  Ring-laser tests of fundamental physics and geophysics , 1997 .

[6]  L. Marton,et al.  Electron beam interferometer , 1953 .

[7]  M. Kasevich,et al.  Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope. , 2005, Physical Review Letters.

[8]  W. Bayh Messung der kontinuierlichen Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische Vektorpotential einer Wolfram-Wendel , 1962 .

[9]  Carnal,et al.  Young's double-slit experiment with atoms: A simple atom interferometer. , 1991, Physical review letters.

[10]  H. Rauch NEUTRON INTERFEROMETRIC TESTS OF QUANTUM MECHANICS , 1986 .

[11]  Mark P. Silverman More Than One Mystery , 1994 .

[12]  T. Ishikawa,et al.  Coherent and intense multibeam generation by the apex of sharp nano-objects: Electron half-circular prism , 2007 .

[13]  M. Laue Zum Versuch von F. Harreß , 1920 .

[14]  J. Spence,et al.  The brightest beam in science: New directions in electron microscopy and interferometry , 1995 .

[15]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[16]  Comparison of the Hanbury Brown–Twiss effect for bosons and fermions , 2006, Nature.

[17]  O. Stern,et al.  Beugung von Molekularstrahlen , 1930 .

[18]  M. Scully,et al.  The ring laser gyro , 1985 .

[19]  J. Komrska Scalar Diffraction Theory in Electron Optics , 1971 .

[20]  W. Elsasser Bemerkungen zur Quantenmechanik freier Elektronen , 1925, Naturwissenschaften.

[21]  E. Varoquaux,et al.  Josephson Effect and Phase Slippage in Superfluids , 1987 .

[22]  Wierzbicki,et al.  Atomic resolution in lensless low-energy electron holography. , 1991, Physical review letters.

[23]  Grigorii B. Malykin,et al.  The Sagnac effect: correct and incorrect explanations , 2000 .

[24]  J. Komrska,et al.  Justification of the Model for Electron Interference Produced by an Electrostatic Biprism , 1973 .

[25]  J. C. Hafele Reply to Schlegel , 1971 .

[26]  G. Möllenstedt,et al.  Fresnelscher Interferenzversuch mit einem Biprisma für Elektronenwellen , 2004, Naturwissenschaften.

[27]  J. Spence,et al.  Aberrations of emission cathodes: Nanometer diameter field-emission electron sources , 1993 .

[28]  P. Morin,et al.  Charge effect in point projection images of carbon fibres , 2000, Journal of microscopy.

[29]  H. Rauch Die Quantenmechanik auf dem Prüfstand der Neutroneninterferometrie , 1985 .

[30]  K. Schreiber,et al.  On the detectability of the Lense–Thirring field from rotating laboratory masses using ring laser gyroscope interferometers , 2003 .

[31]  Raymond Hill,et al.  An Introduction to the Helium Ion Microscope , 2006, Microscopy Today.

[32]  J. Zimmerman,et al.  Compton Wavelength of Superconducting Electrons , 1965 .

[33]  Albert Einstein,et al.  Zum gegenwärtigen Stand des Strahlungsproblems , 1909 .

[34]  Mlynek,et al.  Loss of spatial coherence by a single spontaneous emission. , 1994, Physical review letters.

[35]  E. Varoquaux,et al.  Detection of the earth rotation with a superfluid double-hole resonator , 1996 .

[36]  C. Davisson,et al.  The Scattering of Electrons by a Single Crystal of Nickel , 1927, Nature.

[37]  G. Rempe,et al.  Fringe Visibility and Which-Way Information in an Atom Interferometer , 1998 .

[38]  Yamada,et al.  Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. , 1986, Physical review letters.

[39]  Russell D. Young,et al.  The Topografiner: An Instrument for Measuring Surface Microtopography , 1972 .

[40]  J. Komrska,et al.  Intensity Distributions in Electron Interference Phenomena Produced by an Electrostatic Bi-prism , 1967 .

[41]  B. Yurke Interferometry with correlated fermions , 1988 .

[42]  W. Ehrenberg,et al.  The Refractive Index in Electron Optics and the Principles of Dynamics , 1949 .

[43]  T. Madey,et al.  Faceting of tungsten(111) induced by ultrathin palladium films , 1991 .

[44]  K. Jousten,et al.  Development of a high-brightness gas field-ionization source , 1988 .

[45]  A. Michelson LXXII. Relative motion of earth and æther , 1904 .

[46]  S Gupta,et al.  Bose-Einstein condensation in a circular waveguide. , 2005, Physical review letters.

[47]  J. Spence,et al.  Brightness measurements of nanometer-sized field-emission-electron sources , 1993 .

[48]  J. W. Gadzuk Many-body tunneling-theory approach to field emission of electrons from solids , 1969 .

[49]  P. I. Lukirsky XXXVII. On soft X-Rays from carbon (Preliminary communication.) , 1924 .

[50]  A V Crewe,et al.  A scanning microscope with 5 A resolution. , 1970, Journal of molecular biology.

[51]  Tai Tsun Wu,et al.  Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields , 1975 .

[52]  G. Möllenstedt,et al.  Beobachtungen und Messungen an Biprisma-Interferenzen mit Elektronenwellen , 1956 .

[53]  Joseph Samuel,et al.  THE AHARONOV-BOHM EFFECT , 1994 .

[54]  Hasselbach,et al.  Sagnac experiment with electrons: Observation of the rotational phase shift of electron waves in vacuum. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[55]  Albert A. Michelson,et al.  XXXVIII. On the application of interference-methods to spectroscopic measurements.—I , 1891 .

[56]  R. H. Brown,et al.  Interferometry of the intensity fluctuations in light. II. An experimental test of the theory for partially coherent light , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[57]  E. Polatdemir,et al.  Measurement of tunneling time via electron interferometry , 2004 .

[58]  E. Varoquaux,et al.  Rotation measurements with a superfluid 3He gyrometer , 2000 .

[59]  K. Böhringer,et al.  Current-voltage characteristics of a gas field ion source with a supertip , 1990 .

[60]  P. Sonnentag,et al.  Measurement of decoherence of electron waves and visualization of the quantum-classical transition. , 2007, Physical review letters.

[61]  D. Kobe Aharonov-Bohm effect revisited☆ , 1979 .

[62]  Ford Electromagnetic vacuum fluctuations and electron coherence. , 1993, Physical Review D, Particles and fields.

[63]  L. Mandel,et al.  Coherence and indistinguishability. , 1991, Optics letters.

[64]  G. Möllenstedt,et al.  Messung der kontinuierlichen Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische vektorpotential einer Luftspule , 2004, Naturwissenschaften.

[65]  M. E. Haine,et al.  THE APPLICATION AND LIMITATIONS OF THE EDGE-DIFFRACTION TEST FOR ASTIGMATISM IN THE ELECTRON MICROSCOPE , 1954 .

[66]  Erkki J. Brändas,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory : E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch and I.-O Stamatescu, Springer-Verlag, New York, 2003 , 2004 .

[67]  Avenel,et al.  Observation of singly quantized dissipation events obeying the Josephson frequency relation in the critical flow of superfluid 4He through an aperture. , 1985, Physical review letters.

[68]  Herzog,et al.  Complementarity and the quantum eraser. , 1995, Physical review letters.

[69]  Y. Gohda,et al.  Ab initio calculations of field emission from ultrathin Si(100) films , 2003 .

[70]  Kiesel,et al.  Visibility spectroscopy with electron waves using a Wien filter: higher order corrections , 2000, Micron.

[71]  I. Stamatescu,et al.  BOOK REVIEW: Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .

[72]  H. Boersch,et al.  Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen , 1954 .

[73]  P. Schwoebel,et al.  Localized field ion emission using adsorbed hydrogen films on 〈110〉‐oriented tungsten field emitters , 1984 .

[74]  R. Colella,et al.  Experimental test of gravitationally induced quantum interference , 1974 .

[75]  D. Dieks,et al.  Relativistic aspects of nonrelativistic quantum mechanics , 1990 .

[76]  Yamamoto,et al.  Hologram simulation for off-axis electron holography , 2000, Ultramicroscopy.

[77]  R. Becker,et al.  Über die Stromverteilung in einer supraleitenden Kugel , 1933 .

[78]  T. Amakusa,et al.  Low-temperature field emission system for development of ultracoherent electron beams , 2004 .

[79]  J. Steinhauer,et al.  The a.c. and d.c. Josephson effects in a Bose–Einstein condensate , 2007, Nature.

[80]  J. Simpson Electron Interference Experiments , 1956 .

[81]  A. Miffre,et al.  Atom interferometry , 2006, quant-ph/0605055.

[82]  K. Harada,et al.  Triple-biprism electron interferometry , 2006 .

[83]  L. Reimer,et al.  Scanning Electron Microscopy , 1984 .

[84]  R. Glauber,et al.  Amplifiers, Attenuators, and Schrödinger's Cat a , 1986 .

[85]  Pertti Hakonen,et al.  Detection of the rotation of the earth with a superfluid gyrometer , 1997 .

[86]  P. Sonnentag,et al.  Decoherence of electron waves due to induced charges moving through a nearby resistive material , 2005 .

[87]  Claus Jönsson,et al.  Electron Diffraction at Multiple Slits , 1974 .

[88]  Andreas Renz,et al.  Observation of Hanbury Brown–Twiss anticorrelations for free electrons , 2002, Nature.

[89]  John F. Clauser,et al.  Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry☆ , 1988 .

[90]  Mark D. Semon,et al.  New Techniques and Ideas in Quantum Measurement Theory , 1988 .

[91]  G. Pozzi,et al.  On the statistical aspect of electron interference phenomena , 1976 .

[92]  C. Oshima,et al.  Monochromatic electron emission from the macroscopic quantum state of a superconductor , 1998, Nature.

[93]  W. Schleich Quantum physics: Engineering decoherence , 2000, Nature.

[94]  H. Rohrer,et al.  Coherent electron beams and sources , 1989 .

[95]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[96]  T. Gustavson,et al.  Rotation sensing with a dual atom-interferometer Sagnac gyroscope , 2000 .

[97]  D. Joy,et al.  Transmission and Reflection Holography at Low Energies , 2004 .

[98]  M. Alouani,et al.  Interband absorption in aluminium under pressure , 1986 .

[99]  M. Kasevich,et al.  Testing general relativity with atom interferometry. , 2006, Physical review letters.

[100]  Experiments on the Influence of Electro‐Magnetic and Gravito‐Inertial Potentials and Fields on the Quantum Mechanical Phase of Matter Waves , 1995 .

[101]  K. Jousten,et al.  Growth and current characteristics of stable protrusions on tungsten field ion emitters , 1988 .

[102]  J. Jones,et al.  The sharpening of field emitter tips by ion sputtering , 1971 .

[103]  F. Hasselbach Experiments with Coherent Electron Wave Packets , 1995 .

[104]  C. Wilbertz,et al.  Field-ion imaging of a tungsten supertip , 1995 .

[105]  A Modification to Gabor's Proposed Diffraction Microscope , 1950, Nature.

[106]  F. Hasselbach A ruggedized miniature UHV electron biprism interferometer for new fundamental experiments and applications , 1988 .

[107]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[108]  R. Salmelin,et al.  Phase slippage in superfluid 3He-B , 1992 .

[109]  Niels de Jonge,et al.  Carbon nanotube electron sources and applications , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[110]  Holland,et al.  The fermionic hanbury brown and twiss experiment , 1999, Science.

[111]  R. Buhl Interferenzmikroskopie mit Elektronenwellen , 1959 .

[112]  B. M. Siegel,et al.  Oxygen‐Processed Field Emission Source , 1972 .

[113]  S. Olariu,et al.  The quantum effects of electromagnetic fluxes , 1985 .

[114]  Lang,et al.  New Evidence for Localized Electronic States on Atomically Sharp Field Emitters. , 1996, Physical review letters.

[115]  H. R. Bilger,et al.  ``Sagnac'' effect: A century of Earth-rotated interferometers , 1994 .

[116]  V. Binh,et al.  On the electron and metallic ion emission from nanotips fabricated by field-surface-melting technique: experiments on W and Au tips , 1992 .

[117]  Anton Zeilinger,et al.  Collisional decoherence observed in matter wave interferometry. , 2003, Physical review letters.

[118]  J. Cavaillé,et al.  Surface self-diffusion by ion impact , 1978 .

[119]  G. Möllenstedt,et al.  Elektronenholographie und Rekonstruktion mit Laserlicht , 1968, Naturwissenschaften.

[120]  W. Zurek Reduction of the Wavepacket: How Long Does it Take? , 2003, quant-ph/0302044.

[121]  Atom interferometer as a selective sensor of rotation or gravity , 2006, physics/0604082.

[122]  Second-order temporal and spatial coherence of thermal electrons , 1987 .

[123]  J. Spence,et al.  On the reconstruction of low voltage point projection holograms , 1995 .

[124]  D. Kern,et al.  Oxygen processed field emission tips for microcolumn applications , 1993 .

[125]  J. J. Sakurai Comments on Quantum Mechanical Interference Due to the Earth's Rotation , 1980 .

[126]  Hans-Werner Fink,et al.  Point source for ions and electrons , 1988 .

[127]  A. V. Crewe,et al.  Electron Gun Using a Field Emission Source , 1968 .

[128]  M. Nicklaus,et al.  An electron optical sagnac experiment , 1988 .

[129]  David J. Smith,et al.  Reconstruction technique for off-axis electron holography using coarse fringes. , 2006, Ultramicroscopy.

[130]  J. Spence,et al.  Experimental low-voltage point-projection microscopy and its possibilities , 1993 .

[131]  Friedrich W. Hehl,et al.  On the gravitational effects of rotating masses: The Thirring-Lense papers , 1984 .

[132]  Spence,et al.  Transmission-electron Fourier imaging of crystal lattices using low-voltage field-emission sources: Theory. , 1992, Physical review. B, Condensed matter.

[133]  H. Boersch,et al.  Antiparallele Weische Bereiche als Biprisma fr Elektroneninterferenzen , 1960 .

[134]  J. Anandan New relativistic gravitational effects using charged-particle interferometry , 1984 .

[135]  An apparatus for high resolution field emission spectroscopy , 1997 .

[136]  C. Oshima,et al.  Field emission spectroscopy from field-enhanced diffusion-growth nano-tips , 2001 .

[137]  W. Schleich,et al.  Quantum gyroscopes and Gödel's universe: entanglement opens a new testing ground for cosmology , 2002 .

[138]  N. Robins,et al.  A Pumped Atom Laser , 2007, 0711.4418.

[139]  Hasselbach,et al.  Wien filter: A wave-packet-shifting device for restoring longitudinal coherence in charged-matter-wave interferometers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[140]  T. Matsuda,et al.  Electron Microholography by Two-Beam Method , 1970 .

[141]  G. Goldhaber,et al.  Influence of Bose-Einstein Statistics on the Antiproton-Proton Annihilation Process , 1960 .

[142]  Yasuda,et al.  Observation of Two-Atom Correlation of an Ultracold Neon Atomic Beam. , 1996, Physical review letters.

[143]  K. Harada,et al.  High-resolution observation by double-biprism electron holography , 2004 .

[144]  Fink,et al.  Holography with low-energy electrons. , 1990, Physical review letters.

[145]  J. C. Hafele,et al.  Around-the-World Atomic Clocks: Predicted Relativistic Time Gains , 1972, Science.

[146]  L. A. Page Effect of Earth's Rotation in Neutron Interferometry , 1975 .

[147]  H. Itoh,et al.  Energy spectra of field emission electrons from a W〈310〉 tip , 1996 .

[148]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[149]  S. P. Chen Theoretical studies of ultrathin film-induced faceting on W(111) surfaces , 1992 .

[150]  J. Spence,et al.  Electron source brightness and degeneracy from Fresnel fringes in field emission point projection microscopy , 1994 .

[151]  K. Schwab,et al.  Detection of the Earth's rotation using superfluid phase coherence , 1997, Nature.

[152]  A V Crewe,et al.  Visibility of Single Atoms , 1970, Science.

[153]  Theory of which path dephasing in single electron interference due to trace in conductive environment , 2005, quant-ph/0511022.

[154]  J. Arthur,et al.  Neutron Phase Shift in a Rotating Two-Crystal Interferometer , 1984 .

[155]  J. Lynn,et al.  Neutron Interferometry: Lessons in Experimental Quantum Mechanics , 2002 .

[156]  Aberration Problems. A Discussion concerning the Motion of the Ether near the Earth, and concerning the Connexion between Ether and Gross Matter; with Some New Experiments , 1893 .

[157]  Purcell,et al.  Field-emission electron spectroscopy of single-atom tips. , 1992, Physical review letters.

[158]  Kazuo Yamamoto,et al.  Evaluation of high‐precision phase‐shifting electron holography by using hologram simulation , 2003 .

[159]  H. Zeh On the interpretation of measurement in quantum theory , 1970 .

[160]  J. Notte,et al.  Applications of the Helium Ion Microscope , 2007, Microscopy Today.

[161]  U. Bonse,et al.  Test of a single crystal neutron interferometer , 1974 .

[162]  A. Zettl,et al.  Carbon Nanotube Electrostatic Biprism: Principle of Operation and Proof of Concept , 2004, Microscopy and Microanalysis.

[163]  Tsuyoshi Matsuda,et al.  Demonstration of single‐electron buildup of an interference pattern , 1989 .

[164]  Y. Horiike,et al.  Young's interference of electrons in field emission patterns. , 2002, Physical review letters.

[165]  A. G. Klein,et al.  Longitudinal coherence in neutron interferometry , 1983 .

[166]  T. Gustavson,et al.  Precision Rotation Measurements with an Atom Interferometer Gyroscope , 1997 .

[167]  Yamamoto,et al.  Hanbury brown and twiss-type experiment with electrons , 1999, Science.

[168]  D. Gabor IV Light and Information , 1961 .

[169]  Akira Tonomura,et al.  The Quantum World Unveiled by Electron Waves , 1998 .

[170]  K. Harada,et al.  Double-biprism electron interferometry , 2004 .

[171]  S. A. Werner,et al.  Observation of Gravitationally Induced Quantum Interference , 1975 .

[172]  U. Bonse,et al.  AN X‐RAY INTERFEROMETER , 1965 .

[173]  B. M. Siegel,et al.  H2 and rare gas field ion source with high angular current , 1979 .

[174]  I. Bloch,et al.  Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice , 2006, Nature.

[175]  Pieter Kruit,et al.  Field emission energy distributions from individual multiwalled carbon nanotubes , 1999 .

[176]  J. Spence,et al.  Electron optical properties of nanometer field emission electron sources , 1993 .

[177]  A V Crewe REVIEW ARTICLE: The physics of the high-resolution scanning microscope , 1980 .

[178]  Yamamoto,et al.  High precision phase-shifting electron holography , 2001, Journal of electron microscopy.

[179]  E. Merzbacher,et al.  Single Valuedness of Wave Functions , 1962 .

[180]  J. C. Hafele Relativistic Behaviour of Moving Terrestrial Clocks , 1970, Nature.

[181]  I. Stamatescu,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .

[182]  Ing-Shouh Hwang,et al.  Preparation and Characterization of Single-Atom Tips , 2004 .

[183]  A. Michelson XXVIII. Visibility of interference-fringes in the focus of a telescope , 1891 .

[184]  E. Müller,et al.  Resolution of the Atomic Structure of a Metal Surface by the Field Ion Microscope , 1956 .

[185]  Akira Tonomura,et al.  Applications of electron holography , 1987 .

[186]  The Sagnac Phase Shift Suggested by the Aharonov-Bohm Effect for Relativistic Matter Beams , 2003, gr-qc/0305046.

[187]  B. Cho,et al.  Extreme high vacuum field emission microscope for study on the inherent fluctuation of field emission , 2007 .

[188]  J. Lense,et al.  Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie , 1918 .

[189]  D. Greenberger The neutron interferometer as a device for illustrating the strange behavior of quantum systems , 1983 .

[190]  Packard,et al.  Principles of superfluid-helium gyroscopes. , 1992, Physical review. B, Condensed matter.

[191]  Mark D. Semon Experimental verification of an Aharonov-Bohm effect in rotating reference frames , 1982 .

[192]  D. Gabor Microscopy by reconstructed wave-fronts , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[193]  T. Hoang,et al.  Space structure of a fireball and the pion radius , 1982 .

[194]  Record number (11 000) of interference fringes obtained by a 1 MV field-emission electron microscope , 2002 .

[195]  J. C. Hafele,et al.  Around-the-World Atomic Clocks: Observed Relativistic Time Gains , 1972, Science.

[196]  F. Hasselbach Recent Contributions of Electron Interferometry to Wave—Particle Duality , 1992 .

[197]  P. Hakonen,et al.  Superfluid Gyrometers: Present State and Future Prospects , 1998 .

[198]  T. Tsong,et al.  Noble Metal/W(111) Single-Atom Tips and Their Field Electron and Ion Emission Characteristics , 2006 .

[199]  M. Silverman On the feasibility of observing electron antibunching in a field-emission beam , 1987 .

[200]  R. H. Brown,et al.  The Question of Correlation between Photons in Coherent Light Rays , 1956, Nature.

[201]  A quantum mechanical twin paradox , 1990 .

[202]  T. R. Fox,et al.  Scanning transmission ion microscope with a field ion source. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[203]  A. Zeilinger Complementarity in neutron interferometry , 1986 .

[204]  Hans Thirring,et al.  ber die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. , 1918 .

[205]  D. Greenberger,et al.  Coherence effects in neutron diffraction and gravity experiments , 1979 .

[206]  R. Neutze,et al.  Sagnac experiment with electrons: Reanalysis of a rotationally induced phase shift for charged particles , 1998 .

[207]  Kenneth M. Watson,et al.  Use of intensity correlations to determine the phase of a scattering amplitude , 1963 .

[208]  G. B. Malykin Earlier studies of the Sagnac effect , 1997 .

[209]  L. Marton,et al.  An Electron Interferometer , 1954 .

[210]  J. Leavitt,et al.  Single-Slit Diffraction Pattern of a Thermal Atomic Potassium Beam , 1969 .

[211]  T. Tsong,et al.  Method of creating a Pd-covered single-atom sharp W pyramidal tip: Mechanism and energetics of its formation , 2001 .

[212]  D. Gabor A New Microscopic Principle , 1948, Nature.

[213]  T. Madey,et al.  Faceting induced by ultrathin metal films: structure, electronic properties and reactivity , 1999 .

[214]  R. Chambers Shift of an electron interference pattern by enclosed magnetic flux , 1960 .

[215]  K. Bohringer,et al.  LETTER TO THE EDITOR: Long time current stability of a gas field ion source with a supertip , 1988 .

[216]  C. Chan,et al.  Faceting Induced by Ultrathin Metal Films: A First Principles Study , 1997 .

[217]  J. Anandan Gravitational and rotational effects in quantum interference , 1977 .

[218]  D. DeBra,et al.  Gravity Probe B: Countdown to Launch , 2001 .

[219]  W. Zurek Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse? , 1981 .

[220]  G. Rempe,et al.  Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer , 1998, Nature.

[221]  H-W Fink Mono-atomic tips for scanning tunneling microscopy , 1986, IBM J. Res. Dev..

[222]  C. Jönsson,et al.  Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten , 1961 .

[223]  M. Silverman New quantum effect of confined magnetic flux on electrons , 1986 .

[224]  F. Riehle,et al.  Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. , 1991, Physical review letters.

[225]  Birk,et al.  Shot-Noise Suppression in the Single-Electron Tunneling Regime. , 1995, Physical review letters.

[226]  R. Twiss,et al.  The Detection of Time-correlated Photons by a Coincidence Counter , 1959 .

[227]  Albert A. Michelson,et al.  The Effect of the Earth's Rotation on the Velocity of Light, II. , 1925 .

[228]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[229]  P. Harzer Über die Mitführung des Lichtes in Glas und die Aberration , 1914 .

[230]  K. Harada,et al.  Optical system for double-biprism electron holography. , 2005, Journal of electron microscopy.

[231]  R. Colella,et al.  EFFECT OF EARTH'S ROTATION ON THE QUANTUM MECHANICAL PHASE OF THE NEUTRON , 1979 .

[232]  P. Schwoebel,et al.  Beam current stability from localized emission sites in a field ion source , 1985 .

[233]  E. W. Müller Weitere Beobachtungen mit dem Feldelektronenmikroskop , 1938 .

[234]  A. F. Hildebrandt Magnetic Field of a Rotating Superconductor , 1964 .

[235]  J. Simpson The Theory of the Three-Crystal Electron Interferometer , 1954 .

[236]  Watanabe,et al.  Self-consistent density functional calculation of field emission currents from metals , 2000, Physical review letters.

[237]  Keith,et al.  An interferometer for atoms. , 1991, Physical review letters.

[238]  Quantum-related reference frames and the local physical significance of potentials , 1974 .

[239]  A. G. Klein,et al.  Neutron optics , 1983 .

[240]  B. Englert,et al.  Fringe Visibility and Which-Way Information: An Inequality. , 1996, Physical review letters.

[241]  F. Shimizu Interferometry with Metastable Rare Gas Atoms , 1997 .

[242]  J. C. Hafele Relativistic Time for Terrestrial Circumnavigations , 1972 .

[243]  John C. H. Spence,et al.  STEM and shadow-imaging of biomolecules at 6 eV beam energy , 1997 .

[244]  R. Shimizu,et al.  Quantitative evaluation of spatial coherence of the electron beam from low temperature field emitters. , 2004, Physical review letters.

[245]  Heinz Schmid,et al.  In‐line holography using low‐energy electrons and photons: Applications for manipulation on a nanometer scale , 1995 .

[246]  A. V. Crewe,et al.  A High‐Resolution Scanning Transmission Electron Microscope , 1968 .

[247]  U. Bonse,et al.  Measurement of neutron quantum interference in noninertial frames , 1983 .

[248]  L. Mandel V Fluctuations of Light Beams , 1963 .

[249]  W. M. Powell,et al.  Pion-Pion Correlations in Antiproton Annihilation Events , 1959 .

[250]  J. Spence Convergent-beam nano-diffraction, in-line holography and coherent shadow imaging , 1992 .

[251]  R. Alicki,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .

[252]  G. Möllenstedt,et al.  Elektroneninterferometrische Messung des inneren Potentials , 1957 .

[253]  givenName surName,et al.  Interferometry of the intensity fluctuations in light - I. Basic theory: the correlation between photons in coherent beams of radiation , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[254]  T. Tsong,et al.  Field emission spectra of single-atom tips with thermodynamically stable structures , 2008 .

[255]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[256]  G. Möllenstedt,et al.  Kontinuierliche Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische Vektorpotential eines Solenoids , 1962 .

[257]  Jonathan P. Dowling,et al.  CORRELATED INPUT-PORT, MATTER-WAVE INTERFEROMETER : QUANTUM-NOISE LIMITS TO THE ATOM-LASER GYROSCOPE , 1998 .

[258]  G. Pozzi,et al.  Electron interferometry and interference electron microscopy , 1981 .

[259]  William K. Wootters,et al.  Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr's principle , 1979 .

[260]  N. Bartelt,et al.  Thermodynamics of Surface Morphology , 1991, Science.

[261]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[262]  S. Kalbitzer,et al.  Energy spread of a focused ion beam system with a supertip , 1993 .

[263]  Anton Zeilinger,et al.  Decoherence of matter waves by thermal emission of radiation , 2004, Nature.

[264]  V. Binh,et al.  Nanometric observations at low energy by Fresnel projection microscopy: carbon and polymer fibres , 1995 .

[265]  R. H. Brown,et al.  A New type of interferometer for use in radio astronomy , 1954 .

[266]  S. Vitale,et al.  Superfluid /sup 4/He analog of the rf superconducting quantum interference device and the detection of inertial and gravitational fields , 1984 .

[267]  J. Schmiedmayer,et al.  Wave aspects of electron and ion emission from point sources , 1990 .