Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials

Abstract Comparison of graphite nanoplatelet (GNP) and carbon black (CB) pastes as thermal interface materials shows that the optimum filler content for attaining the maximum thermal contact conductance (copper proximate surfaces, roughness 15 μm) are 2.4, 15 and 2.4 vol.% for GNP, CB (Tokai) and CB (Cabot), respectively. Except for CB (Cabot), the optimum filler content is diminished when the roughness is decreased from 15 to 0.009 μm. Comparing the fillers at their respective optimum contents shows that (i) GNP is similarly effective as CB (Tokai) for rough (15 μm) surfaces, but is less effective than CB (Tokai) for smooth (0.009 μm) surfaces, and (ii) GNP is more effective than CB (Cabot) for rough surfaces, but is slightly less effective than CB (Cabot) for smooth surfaces. GNP gives higher thermal conductivity and greater bond line thickness than CB (Tokai or Cabot), whether the comparison is at the same filler content or at the respective optimum filler contents. In spite of the high thermal conductivity, the effectiveness of GNP is limited, due to the high bond line thickness. CB (Tokai) gives higher thermal conductivity than CB (Cabot), thus causing CB (Tokai) to be more effective than CB (Cabot).

[1]  Jang‐Kyo Kim,et al.  Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets , 2007 .

[2]  L. Drzal,et al.  Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites , 2007 .

[3]  Carbon-black thixotropic thermal pastes for improving thermal contacts , 2005 .

[4]  Chia-Ken Leong,et al.  Comparative evaluation of thermal interface materials for improving the thermal contact between an operating computer microprocessor and its heat sink , 2006 .

[5]  D. Chung,et al.  Effect of carbon black structure on the effectiveness of carbon black thermal interface pastes , 2007 .

[6]  G. L. Solbrekken,et al.  Thermal modeling of grease-type interface material in PPGA application , 1997, Thirteenth Annual IEEE. Semiconductor Thermal Measurement and Management Symposium.

[7]  D. Chung,et al.  Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance , 2003 .

[8]  D.D.L. Chung,et al.  Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments , 2000 .

[9]  D. Chung,et al.  Carbon black dispersions and carbon–silver combinations as thermal pastes that surpass commercial silver and ceramic pastes in providing high thermal contact conductance , 2004 .

[10]  H. Hahn,et al.  Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites , 2006 .

[11]  Changhong Liu,et al.  Aligned Carbon Nanotube Composite Films for Thermal Management , 2005 .

[12]  Y. Aoyagi,et al.  Effects of antioxidants and the solid component on the thermal stability of polyol-ester-based thermal pastes , 2007 .

[13]  G. Odegard,et al.  Modeling and Testing of the Viscoelastic Properties of a Graphite Nanoplatelet/Epoxy Composite , 2006 .

[14]  Ravi Prasher,et al.  Dependence of Thermal Conductivity and Mechanical Rigidity of Particle-Laden Polymeric Thermal Interface Material on Particle Volume Fraction , 2003 .

[15]  D. Chung,et al.  Carbon Nanotube Thermal Pastes for Improving Thermal Contacts , 2007 .

[16]  D. Chung,et al.  Electronic applications of flexible graphite , 2002 .

[17]  I. Daniel,et al.  Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement , 2007 .

[18]  D. Chung,et al.  Exfoliation of intercalated graphite , 1984 .

[19]  G. Marom,et al.  Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites , 2007 .

[20]  R. Kaner,et al.  Intercalation and exfoliation routes to graphite nanoplatelets , 2005 .

[21]  K. Lafdi,et al.  Use of exfoliated graphite filler to enhance polymer physical properties , 2007 .

[22]  M. Itkis,et al.  Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials , 2007 .

[23]  D. Chung,et al.  Carbon black pastes as coatings for improving thermal gap-filling materials , 2006 .

[24]  P. Ajayan,et al.  Anisotropic thermal diffusivity characterization of aligned carbon nanotube-polymer composites. , 2007, Journal of nanoscience and nanotechnology.