Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space

The fast multipole method (FMM) was originally developed for perfect electric conductors (PECs) in free space, through exploitation of the spectral properties of the free-space Green's function. In the work reported here, the FMM is modified, for scattering from an arbitrary three-dimensional (3-D) PEC target above or buried in a lossy half space. The "near" terms in the FMM are handled via the original method-of-moments (MoM) analysis, wherein the half-space Green's function is evaluated efficiently and rigorously through application of the method of complex images. The "far" FMM interactions, which employ a clustering of expansion and testing functions, utilize an approximation to the Green's function dyadic via real image sources and far-field reflection dyadics. The half-space FMM algorithm is validated through comparison with results computed via a rigorous MoM analysis. Further, a detailed comparison is performed on the memory and computational requirements of the MoM and FMM algorithms for a target in the vicinity of a half-space interface.

[1]  D. Wilton,et al.  Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains , 1984 .

[2]  R. Mittra,et al.  Computational Methods for Electromagnetics , 1997 .

[3]  Raj Mittra,et al.  Complex multipole beam approach to electromagnetic scattering problems , 1994 .

[4]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[5]  L. Carin,et al.  Ultra-wide-band synthetic-aperture radar for mine-field detection , 1999 .

[6]  C. Balanis,et al.  Backscatter analysis of dihedral corner reflectors using physical optics and the physical theory of diffraction , 1987 .

[7]  L. Peters,et al.  Buried unexploded ordnance identification via complex natural resonances , 1997 .

[8]  Weng Cho Chew,et al.  Thin-stratified medium fast-multipole algorithm for solving microstrip structures , 1998 .

[9]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[10]  K. Michalski,et al.  Analysis of microstrip resonators of arbitrary shape , 1992 .

[11]  Jiming Song,et al.  Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects , 1997 .

[12]  M. Bleszynski,et al.  AIM: Adaptive integral method for solving large‐scale electromagnetic scattering and radiation problems , 1996 .

[13]  Ismo V. Lindell,et al.  Methods for Electromagnetic Field Analysis , 1992 .

[14]  L. Carin,et al.  Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium , 1999 .

[15]  G. E. Howard,et al.  A closed-form spatial Green's function for the thick microstrip substrate , 1991 .

[16]  R. Mittra,et al.  EVALUATION OF SOMMERFELD INTEGRALS FOR LOSSY HALF-SPACE PROBLEMS , 1981 .

[17]  J. E. Hipp Soil electromagnetic parameters as functions of frequency, soil density, and soil moisture , 1974 .

[18]  R. Shubair,et al.  A simple and accurate complex image interpretation of vertical antennas present in contiguous dielectric half-spaces , 1993 .

[19]  Lawrence Carin,et al.  Fast multipole method for scattering from 3‐D PEC targets situated in a half‐space environment , 1999 .

[20]  Weng Cho Chew,et al.  A study of wavelets for the solution of electromagnetic integral equations , 1995 .

[21]  Tapan K. Sarkar,et al.  On a class of finite step iterative methods (Conjugate directions) for the solution of an operator equation arising in electromagnetics , 1985 .

[22]  L. Felsen,et al.  Radiation and scattering of waves , 1972 .

[23]  Jiming Song,et al.  Multilevel fast‐multipole algorithm for solving combined field integral equations of electromagnetic scattering , 1995 .

[24]  A. D. McLaren,et al.  Optimal numerical integration on a sphere , 1963 .

[25]  L. Carin,et al.  Short-pulse plane-wave scattering from buried perfectly conducting bodies of revolution , 1996 .

[26]  Lawrence Carin,et al.  Wide-band VHF scattering from a trihedral reflector situated above a lossy dispersive halfspace , 1999, IEEE Trans. Geosci. Remote. Sens..

[27]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[28]  F. X. Canning,et al.  Improved impedance matrix localization method (EM problems) , 1993 .

[29]  Lawrence Carin,et al.  Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement , 1997, IEEE Trans. Geosci. Remote. Sens..

[30]  L. Carin,et al.  Ultra-wideband synthetic aperture radar for mine field detection , 1998, Ultra- Wideband Short-Pulse Electromagnetics 4 (IEEE Cat. No.98EX112).

[31]  Kamal Sarabandi,et al.  Optimum corner reflectors for calibration of imaging radars , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[32]  Jiming Song,et al.  Fast multipole method solution using parametric geometry , 1994 .

[33]  J. J. Yang,et al.  Discrete complex images of a three-dimensional dipole above and within a lossy ground , 1991 .

[34]  K. Michalski,et al.  Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media. I. Theory , 1990 .

[35]  Levent Gurel,et al.  Electromagnetic scattering solution of conducting strips in layered media using the fast multipole method , 1996 .

[36]  Jiming Song,et al.  Fast Illinois solver code (FISC) , 1998 .

[37]  M. I. Aksun A robust approach for the derivation of closed-form Green's functions , 1996 .