NPP VIIRS land surface temperature product validation using worldwide observation networks

Thermal infrared satellite observations of the Earth's surface are key components in estimating the surface skin temperature over global land areas. This work presents validation methodologies to estimate the quantitative uncertainty in Land Surface Temperature (LST) product derived from the Visible Infrared Imager Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (NPP) using ground-based measurements currently made operationally at many field and weather stations around the world. Over heterogeneous surfaces in terms of surface types or biophysical properties (e.g., vegetation density, emissivity), the validation protocol accounts for land surface spatial variability around the ground station. Over sparse vegetation canopies, the methodology accounts for viewing directional effects and sun configuration when validating VIIRS LST products.

[1]  Michael A. Palecki,et al.  Land Surface Temperature product validation using NOAA's surface climate observation networks—Scaling methodology for the Visible Infrared Imager Radiometer Suite (VIIRS) , 2012 .

[2]  M. Romaguera,et al.  Land surface temperature retrieval from MSG1-SEVIRI data , 2004 .

[3]  Jean-Philippe Gastellu-Etchegorry,et al.  Thermal infrared radiative transfer within three-dimensional vegetation covers , 2003 .

[4]  Annika Bork-Unkelbach,et al.  Validation of land surface temperature derived from MSG/SEVIRI with in situ measurements at Gobabeb, Namibia , 2013 .

[5]  V. Demarez,et al.  Modeling radiative transfer in heterogeneous 3D vegetation canopies , 1995, Remote Sensing.

[6]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[7]  Catherine Ottlé,et al.  Contribution of Thermal Infrared Remote Sensing Data in Multiobjective Calibration of a Dual-Source SVAT Model , 2006 .

[8]  Simon J. Hook,et al.  Generating Consistent Land Surface Temperature and Emissivity Products Between ASTER and MODIS Data for Earth Science Research , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Joseph J. Michalsky,et al.  An Update on SURFRAD—The GCOS Surface Radiation Budget Network for the Continental United States , 2005 .

[10]  Albert Olioso,et al.  Estimating the difference between brightness and surface temperatures for a vegetal canopy , 1995 .

[11]  G. Hulley,et al.  The North American ASTER Land Surface Emissivity Database (NAALSED) Version 2.0 , 2009 .

[12]  Glynn C. Hulley,et al.  Directional Viewing Effects on Satellite Land Surface Temperature Products Over Sparse Vegetation Canopies—A Multisensor Analysis , 2013, IEEE Geoscience and Remote Sensing Letters.

[13]  Francis Zagolski,et al.  Modeling radiative transfer in heterogeneous 3D vegetation canopies , 1995, Remote Sensing.