Combinatorics of bicubic maps with hard particles

We present a purely combinatorial solution of the problem of enumerating planar bicubic maps with hard particles. This is done by the use of a bijection with a particular class of blossom trees with particles, obtained by an appropriate cutting of the maps. Although these trees have no simple local characterization, we prove that their enumeration may be performed upon introducing a larger class of 'admissible' trees with possibly doubly occupied edges and summing them with appropriate signed weights. The proof relies on an extension of the cutting procedure allowing for the presence on the maps of special non-sectile edges. The admissible trees are characterized by simple local rules, allowing eventually for an exact enumeration of planar bicubic maps with hard particles. We also discuss generalizations for maps with particles subject to more general exclusion rules and show how to re-derive the enumeration of quartic maps with Ising spins in the present framework of admissible trees. We finally comment on a possible interpretation in terms of branching processes.

[1]  P. Francesco,et al.  Census of planar maps: From the one-matrix model solution to a combinatorial proof , 2002, cond-mat/0207682.

[2]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[3]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[4]  P. Francesco Geometrically Constrained Statistical Models on Fixed and Random Lattices: From Hard Squares to Meanders , 2002, cond-mat/0211591.

[5]  J. Bouttier,et al.  Random trees between two walls: exact partition function , 2003 .

[6]  C. Itzykson,et al.  Quantum field theory techniques in graphical enumeration , 1980 .

[7]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.

[8]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[9]  Scaling in quantum gravity , 1995, hep-th/9501049.

[10]  D. S. Gaunt,et al.  Hard‐Sphere Lattice Gases. I. Plane‐Square Lattice , 1965 .

[11]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[12]  Vladimir Kazakov,et al.  The ising model on a random planar lattice: The structure of the phase transition and the exact critical exponents , 1987 .

[13]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[14]  Gilles Schaeffer,et al.  Bijective Census and Random Generation of Eulerian Planar Maps with Prescribed Vertex Degrees , 1997 .

[15]  Philippe Di Francesco,et al.  Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..

[16]  L. K. Runnels,et al.  Exact Finite Method of Lattice Statistics. II. Honeycomb‐Lattice Gas of Hard Molecules , 1967 .

[17]  Gilles Schaeer,et al.  Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees , 1997 .

[18]  W. T. Tutte A Census of Hamiltonian Polygons , 1962, Canadian Journal of Mathematics.

[19]  P. Francesco,et al.  Combinatorics of hard particles on planar graphs , 2002, cond-mat/0211168.

[20]  J. Bouttier,et al.  Critical and tricritical hard objects on bicolourable random lattices: exact solutions , 2002 .

[21]  David Aldous,et al.  Tree-based models for random distribution of mass , 1993 .

[22]  Bergfinnur Durhuus,et al.  Quantum Geometry: A Statistical Field Theory Approach , 1997 .

[23]  Statistical Hausdorff dimension of labelled trees and quadrangulations , 2003 .

[24]  R. Baxter,et al.  Hard hexagons: exact solution , 1980 .

[25]  P. Francesco,et al.  Geodesic distance in planar graphs , 2003, cond-mat/0303272.

[26]  Matrix model calculations beyond the spherical limit , 1993, hep-th/9302014.

[27]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[28]  D. Bessis A new method in the combinatorics of the topological expansion , 1979 .

[29]  S. K. Tsang,et al.  Entropy of hard hexagons , 1980 .

[30]  J. Bouttier,et al.  Statistics of planar graphs viewed from a vertex: A study via labeled trees , 2003, cond-mat/0307606.

[31]  Mireille Bousquet-Mélou,et al.  Enumeration of Planar Constellations , 2000, Adv. Appl. Math..

[32]  J. Bouttier,et al.  Counting Colored Random Triangulations , 2002 .

[33]  Gilles Schaeffer,et al.  The degree distribution in bipartite planar maps: applications to the Ising model , 2002 .

[34]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[35]  Michael R Douglas The Two-Matrix Model , 1991 .

[36]  D. Arquès Rooted planar maps are well labeled trees , 1986 .

[37]  T. Mogami,et al.  Transfer matrix formalism for two-dimensional quantum gravity and fractal structures of space-time , 1993, hep-th/9302133.

[38]  H. Blöte,et al.  The non-interacting hard-square lattice gas: Ising universality , 1993 .

[39]  W. T. Tutte A Census of Slicings , 1962, Canadian Journal of Mathematics.

[40]  S. K. Tsang,et al.  Hard-square lattice gas , 1980 .