Four encounters with sierpińriski’s gasket

[1]  M. C. Er,et al.  A General Algorithm for Finding a Shortest Path between two n-Configurations , 1987, Inf. Sci..

[2]  EXTENDING THE BINOMIAL COEFFICIENTS TO PRESERVE SYMMETRY AND PATTERN , 1989 .

[3]  M. Gardner Mathematical puzzles and diversions from scientific American , 1959 .

[4]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[5]  C. Smith,et al.  Some Binary Games , 1944, The Mathematical Gazette.

[6]  Michael F. Barnsley,et al.  A better way to compress images , 1988 .

[7]  Marta Sved,et al.  Divisibility— with visibility , 1988 .

[8]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[9]  David Singmaster,et al.  Notes on Binomial Coefficients I—A Generalization of Lucas' Congruence , 1974 .

[10]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[11]  David Singmaster Notes on Binomial Coefficients Iii—Any Integer Divides Almost All Binomial Coefficients† , 1974 .

[12]  L. Dickson History of the Theory of Numbers , 1924, Nature.

[13]  Gregory. J. Chaitin,et al.  Algorithmic information theory , 1987, Cambridge tracts in theoretical computer science.

[14]  J. Henle Opinion: The happy formalist , 1991 .

[15]  T. Chan A statistical analysis of the towers of hanoi problem , 1989 .

[16]  Andreas M. Hinz,et al.  Shortest paths between regular states of the Tower of Hanoi , 1992, Inf. Sci..

[17]  Jacques Dutka,et al.  On the Gregorian revision of the Julian calendar , 1988 .

[18]  Arnaud E. Jacquin,et al.  Application Of Recurrent Iterated Function Systems To Images , 1988, Other Conferences.

[19]  D. Wood Adjudicating a towers of hanoi contest , 1983 .

[20]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[21]  E. Kummer,et al.  Ueber die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. , 1852 .

[22]  Lu. Xue-Miao Towers of hanoi graphs , 1986 .

[23]  Lyman P. Hurd,et al.  Fractal image compression , 1993 .

[24]  A. Jacquin A fractal theory of iterated Markov operators with applications to digital image coding , 1989 .

[25]  Arnaud E. Jacquin,et al.  A novel fractal block-coding technique for digital images , 1990, International Conference on Acoustics, Speech, and Signal Processing.