Targeted inhibition of the COP9 signalosome for treatment of cancer

[1]  A. Monfared,et al.  MLN4924 therapy as a novel approach in cancer treatment modalities , 2016, Journal of chemotherapy.

[2]  T. Robak Bortezomib in the treatment of mantle cell lymphoma. , 2015, Future oncology.

[3]  G. Zhong,et al.  CSN5 silencing inhibits invasion and arrests cell cycle progression in human colorectal cancer SW480 and LS174T cells in vitro. , 2015, International journal of clinical and experimental pathology.

[4]  Michele Pagano,et al.  SCF ubiquitin ligase-targeted therapies , 2014, Nature Reviews Drug Discovery.

[5]  Ivan Dikic,et al.  Ubiquitination in disease pathogenesis and treatment , 2014, Nature Medicine.

[6]  U. Hassiepen,et al.  Crystal structure of the human COP9 signalosome , 2014, Nature.

[7]  G. Cavaletti,et al.  Bortezomib-induced peripheral neurotoxicity: an update , 2014, Archives of Toxicology.

[8]  M. Peter,et al.  Protein neddylation: beyond cullin–RING ligases , 2014, Nature Reviews Molecular Cell Biology.

[9]  R. Greenberg,et al.  A BRISC-SHMT complex deubiquitinates IFNAR1 and regulates interferon responses. , 2013, Cell reports.

[10]  H. Laman,et al.  Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins , 2013, Open Biology.

[11]  Sara Schmitt,et al.  From bortezomib to other inhibitors of the proteasome and beyond. , 2013, Current pharmaceutical design.

[12]  Michele Pagano,et al.  Mechanisms and function of substrate recruitment by F-box proteins , 2013, Nature Reviews Molecular Cell Biology.

[13]  Michael J. Sweredoski,et al.  Cand1 Promotes Assembly of New SCF Complexes through Dynamic Exchange of F Box Proteins , 2013, Cell.

[14]  Junying Yuan,et al.  Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. , 2013, Molecular cell.

[15]  Christian Dumas,et al.  Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1 , 2013, Proceedings of the National Academy of Sciences.

[16]  Yunbao Pan,et al.  Targeting Jab1/CSN5 in nasopharyngeal carcinoma. , 2012, Cancer letters.

[17]  Michele Cavo,et al.  Proteasome inhibitors in multiple myeloma: 10 years later. , 2012, Blood.

[18]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[19]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[20]  Shigenori Iwai,et al.  The Molecular Basis of Crl4(Ddb2/Csa) Ubiquitin Ligase Architecture, Targeting, and Activation. , 2011 .

[21]  K. Sugasawa,et al.  The Molecular Basis of CRL4DDB2/CSA Ubiquitin Ligase Architecture, Targeting, and Activation , 2011, Cell.

[22]  R. Zhao,et al.  Roles of COP9 signalosome in cancer , 2011, Cell cycle.

[23]  H. Laman,et al.  Knockdown of Fbxo7 reveals its regulatory role in proliferation and differentiation of haematopoietic precursor cells , 2011, Journal of Cell Science.

[24]  A. Stewart,et al.  Carfilzomib: a novel second-generation proteasome inhibitor. , 2011, Future oncology.

[25]  N. Zheng,et al.  Structural regulation of cullin-RING ubiquitin ligase complexes. , 2011, Current opinion in structural biology.

[26]  S. Thorgeirsson,et al.  Molecular targeting of CSN5 in human hepatocellular carcinoma: a mechanism of therapeutic response , 2011, Oncogene.

[27]  Steven P. Gygi,et al.  Dynamics of Cullin-RING Ubiquitin Ligase Network Revealed by Systematic Quantitative Proteomics , 2010, Cell.

[28]  F. Claret,et al.  JAB1/CSN5: a new player in cell cycle control and cancer , 2010, Cell Division.

[29]  Anjanabha Saha,et al.  Control of cullin-ring ubiquitin ligase activity by nedd8. , 2010, Sub-cellular biochemistry.

[30]  M. Rapé,et al.  Building ubiquitin chains: E2 enzymes at work , 2009, Nature Reviews Molecular Cell Biology.

[31]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[32]  J. Wade Harper,et al.  Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways , 2009, Nature Reviews Molecular Cell Biology.

[33]  Amanda Doucette,et al.  An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer , 2009, Nature.

[34]  Troels Z. Kristiansen,et al.  K63‐specific deubiquitination by two JAMM/MPN+ complexes: BRISC‐associated Brcc36 and proteasomal Poh1 , 2009, The EMBO journal.

[35]  A. Rosenwald,et al.  Amplification at 7q22 targets cyclin-dependent kinase 6 in T-cell lymphoma , 2008, Leukemia.

[36]  Akio Matsuda,et al.  Genome-Wide and Functional Annotation of Human E3 Ubiquitin Ligases Identifies MULAN, a Mitochondrial E3 that Regulates the Organelle's Dynamics and Signaling , 2008, PloS one.

[37]  U. Hassiepen,et al.  A sensitive fluorescence intensity assay for deubiquitinating proteases using ubiquitin-rhodamine110-glycine as substrate. , 2007, Analytical biochemistry.

[38]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[39]  J. Wade Harper,et al.  Drug discovery in the ubiquitin–proteasome system , 2006, Nature Reviews Drug Discovery.

[40]  R. Deshaies,et al.  BMC Biochemistry BioMed Central , 2006 .

[41]  W. Zundel,et al.  The Emerging Role of the COP9 Signalosome in Cancer , 2005, Molecular Cancer Research.

[42]  E. Gelmann,et al.  The ubiquitin-proteasome pathway and its role in cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[43]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[44]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[45]  Timothy Cardozo,et al.  Systematic analysis and nomenclature of mammalian F-box proteins. , 2004, Genes & development.

[46]  Markus Kroemer,et al.  APRV - a program for automated data processing, refinement and visualization. , 2004, Acta crystallographica. Section D, Biological crystallography.

[47]  J. Adams,et al.  Development of the Proteasome Inhibitor Velcade™ (Bortezomib) , 2004, Cancer investigation.

[48]  D. Rees,et al.  JAMM: A Metalloprotease-Like Zinc Site in the Proteasome and Signalosome , 2003, PLoS biology.

[49]  Chunshui Zhou,et al.  The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? , 2003, Nature Cell Biology.

[50]  Xing Wang Deng,et al.  The COP9 signalosome. , 2003, Annual review of cell and developmental biology.

[51]  R. Deshaies,et al.  COP9 Signalosome A Multifunctional Regulator of SCF and Other Cullin-Based Ubiquitin Ligases , 2003, Cell.

[52]  H. Asao,et al.  Identification of AMSH-LP containing a Jab1/MPN domain metalloenzyme motif. , 2003, Biochemical and biophysical research communications.

[53]  B. Schulman,et al.  Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8 , 2003, Nature.

[54]  L. Aravind,et al.  Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1 , 2002, Science.

[55]  L. Aravind,et al.  Role of Rpn11 Metalloprotease in Deubiquitination and Degradation by the 26S Proteasome , 2002, Science.

[56]  S. Elledge,et al.  Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex , 2002, Nature.

[57]  W. Krek,et al.  The F‐box protein Skp2 is a ubiquitylation target of a Cul1‐based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts , 2000, The EMBO journal.

[58]  Alexander Varshavsky,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.

[59]  A. Ciechanover,et al.  Basic Medical Research Award. The ubiquitin system. , 2000, Nature medicine.

[60]  M. Peter,et al.  Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[61]  P. Howley,et al.  Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. , 1998, Molecular cell.

[62]  K Tanaka,et al.  Structure and functions of the 20S and 26S proteasomes. , 1996, Annual review of biochemistry.

[63]  A. Epstein,et al.  Biology of the human malignant lymphomas I. Establishment in continuous cell culture and heterotransplantation of diffuse histiocytic lymphomas , 1974, Cancer.