Intrinsic Structural Disorder in Adenovirus E1A: a Viral Molecular Hub Linking Multiple Diverse Processes

Viruses are obligate intracellular parasites. Their genomes are not large enough to encode all the functions required to independently produce progeny; hence, viruses are absolutely dependent on host cell functions. Mechanistically, these host cell processes in eukaryotes are founded on an exquisitely complex series of molecular interactions. In particular, the execution of complex biological processes requires the precise interaction and regulation of thousands of proteins. The definition of cellular interactomes by systematic analysis of protein-protein interactions has revealed complex molecular networks (39, 82, 111, 122). Most cellular proteins interact with only one or two other proteins, making only one or two connections. However, the minority of proteins interact with tens, or even hundreds, of other proteins to form network hubs. Hub proteins play key roles in regulating and orchestrating the activity of the proteins they interact with, effectively creating functional modules within the cellular interactome (35, 48, 62). The central role served by cellular hub proteins in regulating cell functions makes them ideal targets during a viral infection. By targeting a single cellular hub, a viral regulatory protein can effectively gain control over an entire module, potentially comprised of hundreds of proteins. By targeting multiple cellular hubs, a virally encoded hub can transform the architecture of the cellular protein interaction network, reprogramming virtually all aspects of cell function and behavior. The viral oncogenes of the small DNA tumor viruses encode some of the most versatile and potent viral hub proteins. Among these, adenovirus E1A is one of the best characterized and is the subject of this review.

[1]  G. Chinnadurai,et al.  PLDLS-dependent interaction of E1A with CtBP: regulation of CtBP nuclear localization and transcriptional functions , 2007, Oncogene.

[2]  Ronen Marmorstein,et al.  Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor. , 2007, Genes & development.

[3]  E. Greene,et al.  Transcriptional Activation of Histone Genes Requires NPAT-Dependent Recruitment of TRRAP-Tip60 Complex to Histone Promoters during the G1/S Phase Transition , 2007, Molecular and Cellular Biology.

[4]  Zhenguo Wu,et al.  BS69 is involved in cellular senescence through the p53–p21Cip1 pathway , 2007, EMBO reports.

[5]  P. Barral,et al.  The effect of CtBP1 binding on the structure of the C-terminal region of adenovirus 12 early region 1A. , 2007, Virology.

[6]  Anthony Scimè,et al.  Adenovirus E1A proteins direct subcellular redistribution of Nek9, A NimA‐related kinase , 2007, Journal of cellular physiology.

[7]  M. Yen,et al.  Increased expression of Dyrk1a in HPV16 immortalized Keratinocytes enable evasion of apoptosis , 2007, International journal of cancer.

[8]  J. Butel,et al.  Cell transformation by viruses , 1971, In Vitro.

[9]  G. Chinnadurai Transcriptional regulation by C-terminal binding proteins. , 2007, The international journal of biochemistry & cell biology.

[10]  C. Carlson,et al.  Molecular basis of AKAP specificity for PKA regulatory subunits. , 2006, Molecular cell.

[11]  Marc S. Cortese,et al.  Analysis of molecular recognition features (MoRFs). , 2006, Journal of molecular biology.

[12]  M. Baum,et al.  Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7 , 2006, Oncogene.

[13]  M. G. Paggi,et al.  Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins , 2006, Oncogene.

[14]  J. Mymryk,et al.  Roles for APIS and the 20S proteasome in adenovirus E1A‐dependent transcription , 2006, The EMBO journal.

[15]  Mauro Fasano,et al.  The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured , 2006 .

[16]  K. N. Chandrika,et al.  Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets , 2006, Nature Genetics.

[17]  G. Chinnadurai,et al.  Acetylation by p300 Regulates Nuclear Localization and Function of the Transcriptional Corepressor CtBP2* , 2006, Journal of Biological Chemistry.

[18]  S. Akira,et al.  BS69, a Specific Adaptor in the Latent Membrane Protein 1-Mediated c-Jun N-Terminal Kinase Pathway , 2006, Molecular and Cellular Biology.

[19]  M. Kitagawa,et al.  Ubiquitin-dependent degradation of adenovirus E1A protein is inhibited by BS69. , 2006, Biochemical and biophysical research communications.

[20]  E. Friedman,et al.  Mirk/Dyrk1B: a multifunctional dual-specificity kinase involved in growth arrest, differentiation, and cell survival. , 2006, Cell biochemistry and biophysics.

[21]  A. Berk,et al.  Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus , 2005, Oncogene.

[22]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[23]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[24]  S. Müller,et al.  Viral oncoproteins E1A and E7 and cellular LxCxE proteins repress SUMO modification of the retinoblastoma tumor suppressor , 2005, Oncogene.

[25]  J. Baxter,et al.  E1A and a nuclear receptor corepressor splice variant (N-CoRI) are thyroid hormone receptor coactivators that bind in the corepressor mode. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Mymryk,et al.  Recruitment of CBP/p300, TATA-Binding Protein, and S8 to Distinct Regions at the N Terminus of Adenovirus E1A , 2005, Journal of Virology.

[27]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[28]  J. Mymryk,et al.  Comprehensive sequence analysis of the E1A proteins of human and simian adenoviruses. , 2004, Virology.

[29]  Bernard F. Buxton,et al.  The DISOPRED server for the prediction of protein disorder , 2004, Bioinform..

[30]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[31]  C. Gorbea,et al.  The Targeting of the Proteasomal Regulatory Subunit S2 by Adenovirus E1A Causes Inhibition of Proteasomal Activity and Increased p53 Expression* , 2004, Journal of Biological Chemistry.

[32]  Erica S. Johnson,et al.  Protein modification by SUMO. , 2004, Annual review of biochemistry.

[33]  M. Gore,et al.  A Multicenter Phase I Gene Therapy Clinical Trial Involving Intraperitoneal Administration of E1A-Lipid Complex in Patients with Recurrent Epithelial Ovarian Cancer Overexpressing HER-2/neu Oncogene , 2004, Clinical Cancer Research.

[34]  T. Liu,et al.  A novel E1A–E1B mutant adenovirus induces glioma regression in vivo , 2004, Oncogene.

[35]  J. Schaack,et al.  E1A and E1B proteins inhibit inflammation induced by adenovirus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Luke Hughes-Davies,et al.  EMSY Links the BRCA2 Pathway to Sporadic Breast and Ovarian Cancer , 2003, Cell.

[37]  M. Nardini,et al.  CtBP/BARS: a dual‐function protein involved in transcription co‐repression and Golgi membrane fission , 2003, The EMBO journal.

[38]  J. Mymryk,et al.  Cellular context of coregulator and adaptor proteins regulates human adenovirus 5 early region 1A-dependent gene activation by the thyroid hormone receptor. , 2003, Molecular endocrinology.

[39]  M. Kagey,et al.  The Polycomb Protein Pc2 Is a SUMO E3 , 2003, Cell.

[40]  N. Perkins,et al.  P300 transcriptional repression is mediated by SUMO modification. , 2003, Molecular cell.

[41]  A. Baldi,et al.  E1A deregulates the centrosome cycle in a Ran GTPase-dependent manner. , 2003, Cancer research.

[42]  L. Iakoucheva,et al.  Intrinsic disorder in cell-signaling and cancer-associated proteins. , 2002, Journal of molecular biology.

[43]  J. Mymryk,et al.  Comparative Sequence Analysis of the Largest E1A Proteins of Human and Simian Adenoviruses , 2002, Journal of Virology.

[44]  F. Dick,et al.  Three Regions of the pRB Pocket Domain Affect Its Inactivation by Human Papillomavirus E7 Proteins , 2002, Journal of Virology.

[45]  S. Frisch,et al.  Adenovirus-5 E1A: paradox and paradigm , 2002, Nature Reviews Molecular Cell Biology.

[46]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[47]  A. E. Hirsh,et al.  Evolutionary Rate in the Protein Interaction Network , 2002, Science.

[48]  A. Leutz,et al.  The Conserved Mynd Domain of BS69 Binds Cellular and Oncoviral Proteins through a Common PXLXP Motif* , 2002, The Journal of Biological Chemistry.

[49]  Millard H. Lambert,et al.  Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα , 2002, Nature.

[50]  G. Chinnadurai,et al.  CtBP, an unconventional transcriptional corepressor in development and oncogenesis. , 2002, Molecular cell.

[51]  J. M. Boyd,et al.  Adenovirus E1A N-Terminal Amino Acid Sequence Requirements for Repression of Transcription In Vitro and In Vivo Correlate with Those Required for E1A Interference with TBP-TATA Complex Formation , 2002, Journal of Virology.

[52]  M. Hung,et al.  The NH(2)-terminal and conserved region 2 domains of adenovirus E1A mediate two distinct mechanisms of tumor suppression. , 2002, Cancer research.

[53]  B. Amati,et al.  Recruitment of TRRAP required for oncogenic transformation by E1A , 2001, Oncogene.

[54]  A. Turnell,et al.  Adenovirus E1A: remodelling the host cell, a life or death experience , 2001, Oncogene.

[55]  G. Demers,et al.  Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy , 2001, Nature Biotechnology.

[56]  E. Hartmann,et al.  Adenoviral E1A protein nuclear import is preferentially mediated by importin alpha3 in vitro. , 2001, Virology.

[57]  Jill D. Gerber,et al.  The p400 Complex Is an Essential E1A Transformation Target , 2001, Cell.

[58]  A. Giordano,et al.  RACK1 Interacts with E1A and Rescues E1A-induced Yeast Growth Inhibition and Mammalian Cell Apoptosis* , 2001, The Journal of Biological Chemistry.

[59]  G. Hortobagyi,et al.  Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[60]  M. Krstic-Demonacos,et al.  Acetylation control of the retinoblastoma tumour-suppressor protein , 2001, Nature Cell Biology.

[61]  C. Carlson,et al.  Binding of PKA-RIIalpha to the Adenovirus E1A12S oncoprotein correlates with its nuclear translocation and an increase in PKA-dependent promoter activity. , 2001, Virology.

[62]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[63]  T. Reynolds,et al.  Phase I trial of intratumoral liposome E1A gene therapy in patients with recurrent breast and head and neck cancer. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[64]  J. Mymryk,et al.  Interaction of the E1A oncoprotein with Yak1p, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases. , 2001, Molecular biology of the cell.

[65]  J. Lipsick,et al.  BS69, an adenovirus E1A-associated protein, inhibits the transcriptional activity of c-Myb , 2001, Oncogene.

[66]  N. Dyson,et al.  Retinoblastoma protein partners. , 2001, Advances in cancer research.

[67]  V. Uversky,et al.  Why are “natively unfolded” proteins unstructured under physiologic conditions? , 2000, Proteins.

[68]  G. Demers,et al.  Evaluation of E1-mutant adenoviruses as conditionally replicating agents for cancer therapy. , 2000, Molecular therapy : the journal of the American Society of Gene Therapy.

[69]  L. Johnson,et al.  An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy , 2000, Nature Medicine.

[70]  C. Gorbea,et al.  Regulation of the 26S proteasome by adenovirus E1A , 2000, The EMBO journal.

[71]  S. Frisch,et al.  Evidence for a function of CtBP in epithelial gene regulation and anoikis , 2000, Oncogene.

[72]  B. Amati,et al.  Conserved region 2 of adenovirus E1A has a function distinct from pRb binding required to prevent cell cycle arrest by p16INK4a or p27Kip1 , 2000, Oncogene.

[73]  C. Glass,et al.  Molecular determinants of nuclear receptor-corepressor interaction. , 1999, Genes & development.

[74]  M. Gilman,et al.  Proteasome‐mediated degradation of transcriptional activators correlates with activation domain potency in vivo , 1999, The EMBO journal.

[75]  M. Lazar,et al.  The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors , 1999, Nature.

[76]  M. Bolin,et al.  The adenovirus E1A protein is a potent coactivator for thyroid hormone receptors. , 1999, Molecular endocrinology.

[77]  E. Lees,et al.  Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein , 1999, Nature.

[78]  T. Kouzarides,et al.  Characterization of an E1A-CBP Interaction Defines a Novel Transcriptional Adapter Motif (TRAM) in CBP/p300 , 1999, Journal of Virology.

[79]  Wagner Ja Technology evaluation: tgDCC-E1A, targeted genetics/MD Anderson. , 1999 .

[80]  Wenlan Wang,et al.  Adenovirus early region 1A protein binds to mammalian SUG1-a regulatory component of the proteasome , 1999, Oncogene.

[81]  J. Wagner Technology evaluation: tgDCC-E1A, targeted genetics/MD Anderson. , 1999, Current opinion in molecular therapeutics.

[82]  G. Chinnadurai,et al.  Structural Determinants Present in the C-terminal Binding Protein Binding Site of Adenovirus Early Region 1A Proteins* , 1998, The Journal of Biological Chemistry.

[83]  Andrew J. Bannister,et al.  E1A directly binds and regulates the P/CAF acetyltransferase , 1998, The EMBO journal.

[84]  A. Ström,et al.  AR1 Is an Integral Part of the Adenovirus Type 2 E1A-CR3 Transactivation Domain , 1998, Journal of Virology.

[85]  H. Esche,et al.  Amino acids 1-29 of the adenovirus serotypes 12 and 2 E1A proteins interact with rap30 (TF(II)F) and TBP in vitro. , 1998, Virus research.

[86]  Jie-Oh Lee,et al.  Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7 , 1998, Nature.

[87]  A. Ström,et al.  AR 1 Is an Integral Part of the Adenovirus Type 2 E 1 ACR 3 Transactivation Domain , 1998 .

[88]  J. Flint,et al.  Viral transactivating proteins. , 1997, Annual review of genetics.

[89]  S. Jentsch,et al.  mUBC9, a Novel Adenovirus E1A-interacting Protein That Complements a Yeast Cell Cycle Defect* , 1996, The Journal of Biological Chemistry.

[90]  J. Mymryk Tumour suppressive properties of the adenovirus 5 E1A oncogene. , 1996, Oncogene.

[91]  K. Somasundaram,et al.  Repression of a matrix metalloprotease gene by E1A correlates with its ability to bind to cell type-specific transcription factor AP-2. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[92]  T. Hermiston,et al.  Induction of susceptibility to tumor necrosis factor by E1A is dependent on binding to either p300 or p105-Rb and induction of DNA synthesis , 1996, Journal of virology.

[93]  P. Yaciuk,et al.  E1A promotes association between p300 and pRB in multimeric complexes required for normal biological activity , 1995, Journal of virology.

[94]  J. Douglas,et al.  Efficient nuclear localization and immortalizing ability, two functions dependent on the adenovirus type 5 (Ad5) E1A second exon, are necessary for cotransformation with Ad5 E1B but not with T24ras , 1995, Journal of virology.

[95]  J. M. Boyd,et al.  Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[96]  J. Mazzarelli,et al.  The viral oncoproteins Ad5 E1A, HPV16 E7 and SV40 TAg bind a common region of the TBP-associated factor-110. , 1995, Oncogene.

[97]  J. V. Geisberg,et al.  Subregions of the adenovirus E1A transactivation domain target multiple components of the TFIID complex , 1995, Molecular and cellular biology.

[98]  K. Toth,et al.  Transcription factor TFIID is a direct functional target of the adenovirus E1A transcription-repression domain. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[99]  H. Stunnenberg,et al.  BS69, a novel adenovirus E1A‐associated protein that inhibits E1A transactivation. , 1995, The EMBO journal.

[100]  D. Livingston,et al.  A family of transcriptional adaptor proteins targeted by the E1A oncoprotein , 1995, Nature.

[101]  S. Bayley,et al.  Adenovirus e1a proteins and transformation (review). , 1994, International journal of oncology.

[102]  M. Mannervik,et al.  An adenovirus E1A transcriptional repressor domain functions as an activator when tethered to a promoter. , 1994, Nucleic acids research.

[103]  E. Ziff,et al.  Complementary functions of E1a conserved region 1 cooperate with conserved region 3 to activate adenovirus serotype 5 early promoters , 1994, Journal of virology.

[104]  J B Lawrence,et al.  Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. , 1994, Genes & development.

[105]  Michael R. Green,et al.  Promoter targeting by adenovirus E1a through interaction with different cellular DNA-binding domains , 1994, Nature.

[106]  S. Bayley,et al.  Induction of apoptosis by adenovirus type 5 E1A in rat cells requires a proliferation block. , 1994, Oncogene.

[107]  J. V. Geisberg,et al.  The zinc finger region of the adenovirus E1A transactivating domain complexes with the TATA box binding protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[108]  P. Branton,et al.  Functional interactions within adenovirus E1A protein complexes. , 1994, Oncogene.

[109]  R. Weinberg,et al.  Distinct sub‐populations of the retinoblastoma protein show a distinct pattern of phosphorylation. , 1994, The EMBO journal.

[110]  K. Helin,et al.  Independent regions of adenovirus E1A are required for binding to and dissociation of E2F-protein complexes , 1993, Molecular and cellular biology.

[111]  J. Nevins,et al.  Identification of distinct roles for separate E1A domains in disruption of E2F complexes , 1993, Molecular and cellular biology.

[112]  W. Kraus,et al.  E1A-mediated inhibition of myogenesis correlates with a direct physical interaction of E1A12S and basic helix-loop-helix proteins , 1993, Molecular and cellular biology.

[113]  J. M. Boyd,et al.  A region in the C‐terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24‐ras mediated transformation, tumorigenesis and metastasis. , 1993, The EMBO journal.

[114]  S. Bayley,et al.  Induction of AP-1 DNA-binding activity and c-fos mRNA by the adenovirus 243R E1A protein and cyclic AMP requires domains necessary for transformation , 1992, Journal of virology.

[115]  K. Münger,et al.  Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[116]  J. Culp,et al.  Conversion of the E1A Cys4 zinc finger to a nonfunctional His2,Cys2 zinc finger by a single point mutation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[117]  R. Ricciardi,et al.  trans-dominant mutants of E1A provide genetic evidence that the zinc finger of the trans-activating domain binds a transcription factor , 1991, Molecular and cellular biology.

[118]  I. Fraser,et al.  Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. , 1991, The Journal of biological chemistry.

[119]  S. Malstrom,et al.  Requirement of the C-terminal region of adenovirus E1a for cell transformation in cooperation with E1b. , 1991, Oncogene.

[120]  J. Flint,et al.  Transcriptional and transforming activities of the adenovirus E1A proteins. , 1991, Advances in cancer research.

[121]  P. Yaciuk,et al.  Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity , 1990, Journal of virology.

[122]  Michael R. Green,et al.  Evidence for interaction of different eukaryotic transcriptional activators with distinct cellular targets , 1990, Nature.

[123]  Michael R. Green,et al.  A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1a protein , 1990, Cell.

[124]  J. Howe,et al.  Sequences in E1A proteins of human adenovirus 5 required for cell transformation, repression of a transcriptional enhancer, and induction of proliferating cell nuclear antigen. , 1989, Virology.

[125]  G. Chinnadurai,et al.  Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1a protein. , 1989, Oncogene.

[126]  J. B. Lewis,et al.  Genetic dissection of the transactivating domain of the E1a 289R protein of adenovirus type 2 , 1989, Journal of virology.

[127]  Michael R. Green,et al.  Transcription activation by the adenovirus E1a protein , 1989, Nature.

[128]  V. Kh,et al.  Functional similarity between HPV16E7, SV40 large T and adenovirus E1a proteins. , 1989 .

[129]  K. Vousden,et al.  Functional similarity between HPV16E7, SV40 large T and adenovirus E1a proteins. , 1989, Oncogene.

[130]  P. Branton,et al.  Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5 , 1988, Molecular and cellular biology.

[131]  J. Culp,et al.  The 289-amino acid E1A protein of adenovirus binds zinc in a region that is important for trans-activation. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[132]  Stephen H. Friend,et al.  Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product , 1988, Nature.

[133]  K. Münger,et al.  The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A , 1988, Cell.

[134]  T. Smith,et al.  Prediction of similar transforming regions in simian virus 40 large T, adenovirus E1A, and myc oncoproteins , 1988, Journal of virology.

[135]  E. Ziff,et al.  Adenovirus E1a ras cooperation activity is separate from its positive and negative transcription regulatory functions , 1988, Molecular and cellular biology.

[136]  J. Howe,et al.  Use of deletion and point mutants spanning the coding region of the adenovirus 5 E1A gene to define a domain that is essential for transcriptional activation. , 1988, Virology.

[137]  H. Ruley,et al.  Two regions of the adenovirus early region 1A proteins are required for transformation , 1988, Journal of virology.

[138]  E. Harlow,et al.  Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kd and 35 kd proteins. , 1987, The EMBO journal.

[139]  G. Akusjärvi,et al.  A novel adenovirus‐2 E1A mRNA encoding a protein with transcription activation properties. , 1987, The EMBO journal.

[140]  G. Chinnadurai,et al.  Relationship between the transforming and transcriptional regulatory functions of adenovirus 2 E1a oncogene. , 1987, Virology.

[141]  R. Lyons,et al.  Pentapeptide nuclear localization signal in adenovirus E1a , 1987, Molecular and cellular biology.

[142]  N. Jones,et al.  Mutational analysis of the adenovirus E1a gene: the role of transcriptional regulation in transformation. , 1987, The EMBO journal.

[143]  M. Mathews,et al.  Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes , 1986, Molecular and cellular biology.

[144]  J. Lillie,et al.  An adenovirus E1a protein region required for transformation and transcriptional repression , 1986, Cell.

[145]  D. Kimelman,et al.  E1a regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related , 1985, Journal of virology.

[146]  B. Krippl,et al.  Functions of purified E1A protein microinjected into mammalian cells. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[147]  P. Branton,et al.  Intracellular localization of adenovirus type 5 tumor antigens in productively infected cells. , 1983, Virology.

[148]  B. Hesper,et al.  Comparison of the nucleotide sequences of early region E1b DNA of human adenovirus types 12, 7 and 5 (subgroups A, B and C). , 1983, Gene.

[149]  J. Nevins,et al.  Regulation of the Primary Expression of the Early Adenovirus Transcription Units , 1979, Journal of virology.

[150]  N. Jones,et al.  An adenovirus type 5 early gene function regulates expression of other early viral genes. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[151]  D. Spector,et al.  Regulation of the appearance of cytoplasmic RNAs from region 1 of the adenovirus 2 genome. , 1978, Journal of molecular biology.

[152]  R. Dulbecco Cell transformation by viruses. , 1969, Science.