Efficiency of energy transfer in a light-harvesting system under quantum coherence

We investigate the role of quantum coherence in the efficiency of excitation transfer in a ring-hub arrangement of interacting two-level systems, mimicking a light-harvesting antenna connected to a reaction center as it is found in natural photosynthetic systems. By using a quantum jump approach, we demonstrate that in the presence of quantum coherent energy transfer and energetic disorder, the efficiency of excitation transfer from the antenna to the reaction center depends intimately on the quantum superposition properties of the initial state. In particular, we find that efficiency is sensitive to symmetric and asymmetric superposition of states in the basis of localized excitations, indicating that initial-state properties can be used as an efficiency control parameter at low temperatures.

[1]  Jürgen Köhler,et al.  The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes , 2006, Quarterly Reviews of Biophysics.

[2]  D. S. Bradshaw,et al.  Optically nonlinear energy transfer in light-harvesting dendrimers. , 2004, The Journal of chemical physics.

[3]  K Schulten,et al.  Model for the light-harvesting complex I (B875) of Rhodobacter sphaeroides. , 1998, Biophysical journal.

[4]  K. Schulten,et al.  Kinetics of Excitation Migration and Trapping in the Photosynthetic Unit of Purple Bacteria , 2001 .

[5]  S. Mukamel,et al.  Control of Intrachromophore Excitonic Coherence in Electroluminescent Conjugated Dendrimers , 2002 .

[6]  V. Sundström,et al.  Exciton delocalization probed by excitation annihilation in the light-harvesting antenna LH2. , 2001, Physical review letters.

[7]  K. Schulten,et al.  The quantum physics of photosynthesis. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  Jan F. Schmidt,et al.  Spectroscopy on individual light-harvesting 1 complexes of Rhodopseudomonas acidophila. , 2002, Biophysical journal.

[9]  K. Lakatos‐Lindenberg,et al.  Impurity quenching of molcular excitons. III. Partially coherent excitons in linear chains , 1974 .

[10]  Klaus Schulten,et al.  Photosynthetic apparatus of purple bacteria , 2002, Quarterly Reviews of Biophysics.

[11]  Klaus Schulten,et al.  Pigment Organization and Transfer of Electronic Excitation in the Photosynthetic Unit of Purple Bacteria , 1997 .

[12]  Klaus Schulten,et al.  Excitation energy trapping by the reaction center of Rhodobacter Sphaeroides , 2000 .

[13]  G. Milburn,et al.  Entanglement sharing and decoherence in the spin-bath (6 pages) , 2004, quant-ph/0407206.

[14]  Seogjoo J. Jang,et al.  Multichromophoric Förster resonance energy transfer. , 2004, Physical review letters.

[15]  Arvi Freiberg,et al.  Excitons in core LH1 antenna complexes of photosynthetic bacteria: Evidence for strong resonant coupling and off-diagonal disorder , 2005 .

[16]  Hohjai Lee,et al.  Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence , 2007, Science.

[17]  R. Silbey,et al.  Coherence in the B800 ring of purple bacteria LH2. , 2006, Physical review letters.

[18]  R. Pearlstein Impurity Quenching of Molecular Excitons. I. Kinetic Comparison of Förster—Dexter and Slowly Quenched Frenkel Excitons in Linear Chains , 1972 .

[19]  Rienk van Grondelle,et al.  Energy transfer in photosynthesis: experimental insights and quantitative models. , 2006, Physical chemistry chemical physics : PCCP.

[20]  A. Oijen,et al.  Unraveling the electronic structure of individual photosynthetic pigment-protein complexes , 1999, Science.

[21]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[22]  R. Hemenger,et al.  Impurity quenching of molecular excitons II. Frenkel excitons in linear chains , 1973 .

[23]  H. Carmichael An open systems approach to quantum optics , 1993 .

[24]  C. Bardeen,et al.  The effects of connectivity, coherence, and trapping on energy transfer in simple light-harvesting systems studied using the Haken-Strobl model with diagonal disorder. , 2004, The Journal of chemical physics.

[25]  Ying Wang,et al.  Excitation energy transfer in branched dendritic macromolecules at low (4 k) temperatures. , 2003, Journal of the American Chemical Society.

[26]  Arvi Freiberg,et al.  A disordered polaron model for polarized fluorescence excitation spectra of LH1 and LH2 bacteriochlorophyll antenna aggregates , 2006 .

[27]  Jürgen Köhler,et al.  Multivariate analysis of single-molecule spectra: surpassing spectral diffusion. , 2005, Physical review letters.

[28]  N. Makri,et al.  Short-Range Coherence in the Energy Transfer of Photosynthetic Light-Harvesting Systems , 1999 .

[29]  Joel Gilmore,et al.  Criteria for quantum coherent transfer of excitations between chromophores in a polar solvent , 2004, quant-ph/0412170.

[30]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.