Characterizing the entropy function region via extreme rays

Contrary to the traditional method of information inequalities, in this paper, the entropy function region Γ<sub>n</sub>* and its closure ̅Γ<sub>n</sub>* are characterized via extreme rays of its outer bound polymatroidal region Γ<sub>n</sub>. The characterization of Γ<sub>3</sub>* and the tightness of Γ<sub>n</sub> as an outer bound on ̅Γ<sub>n</sub>* are studied.

[1]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[2]  Frantisek Matús,et al.  Extreme convex set functions with many nonnegative differences , 1994, Discret. Math..

[3]  Raymond W. Yeung,et al.  Information Theory and Network Coding , 2008 .

[4]  F. Matús,et al.  Two Constructions on Limits of Entropy Functions , 2007, IEEE Transactions on Information Theory.

[5]  Randall Dougherty,et al.  Six New Non-Shannon Information Inequalities , 2006, 2006 IEEE International Symposium on Information Theory.

[6]  Frantisek Matús,et al.  Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.

[7]  Zhen Zhang,et al.  A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.

[8]  Weidong Xu,et al.  A projection method for derivation of non-Shannon-type information inequalities , 2008, 2008 IEEE International Symposium on Information Theory.

[9]  Milan Studený,et al.  Conditional Independences among Four Random Variables I , 1995, Combinatorics, Probability and Computing.

[10]  Raymond W. Yeung,et al.  A class of non-Shannon-type information inequalities and their applications , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[11]  Raymond W. Yeung,et al.  A framework for linear information inequalities , 1997, IEEE Trans. Inf. Theory.

[12]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[13]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[14]  Alex J. Grant,et al.  Non-entropic inequalities from information constraints , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[15]  Satoru Fujishige,et al.  Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..

[16]  James G. Oxley,et al.  Matroid theory , 1992 .

[17]  Frantisek Matús,et al.  Piecewise linear conditional information inequality , 2006, IEEE Transactions on Information Theory.

[18]  G. Ziegler Lectures on Polytopes , 1994 .