A MIP formulation for the minmax regret total completion time in scheduling with unrelated parallel machines

The paper proposes a Mixed Integer Programming (MIP) formulation of the scheduling problem with total flow criterion on a set of parallel unrelated machines under an uncertainty context about the processing times. To model the problem we assume that lower and upper bounds are known for each processing time. In this context we consider an optimal minmax regret schedule as a suitable approximation to the optimal schedule under an arbitrary choice of the possible processing times.

[1]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[2]  Jerzy Józefczyk,et al.  Minmax Regret Algorithms for Uncertain PCmax Problem with Interval Processing Times , 2011, 2011 21st International Conference on Systems Engineering.

[3]  George L. Vairaktarakis,et al.  Robust scheduling of a two-machine flow shop with uncertain processing times , 2000 .

[4]  Adam Kurpisz,et al.  Approximating a two-machine flow shop scheduling under discrete scenario uncertainty , 2012, Eur. J. Oper. Res..

[5]  Eduardo Conde,et al.  A 2-approximation for minmax regret problems via a mid-point scenario optimal solution , 2010, Oper. Res. Lett..

[6]  Reha Uzsoy,et al.  Executing production schedules in the face of uncertainties: A review and some future directions , 2005, Eur. J. Oper. Res..

[7]  Igor Averbakh,et al.  Complexity of minimizing the total flow time with interval data and minmax regret criterion , 2006, Discret. Appl. Math..

[8]  Yuri N. Sotskov,et al.  Minimizing total weighted flow time of a set of jobs with interval processing times , 2009, Math. Comput. Model..

[9]  Roberto Montemanni,et al.  A Mixed Integer Programming Formulation for the Total Flow Time Single Machine Robust Scheduling Problem with Interval Data , 2007, J. Math. Model. Algorithms.

[10]  Daniel Vanderpooten,et al.  Complexity of the min-max and min-max regret assignment problems , 2005, Oper. Res. Lett..

[11]  Vladimiro Miranda,et al.  Why risk analysis outperforms probabilistic choice as the effective decision support paradigm for power system planning , 1998 .

[12]  M. K. Luhandjula Studies in Fuzziness and Soft Computing , 2013 .

[13]  Adam Kasperski,et al.  Possibilistic Minmax Regret Sequencing Problems With Fuzzy Parameters , 2011, IEEE Transactions on Fuzzy Systems.

[14]  Igor Averbakh,et al.  Exact and heuristic algorithms for the interval data robust assignment problem , 2011, Comput. Oper. Res..

[15]  Adam Kasperski,et al.  A 2-approximation algorithm for interval data minmax regret sequencing problems with the total flow time criterion , 2008, Oper. Res. Lett..

[16]  Kenneth Holmström,et al.  The TOMLAB Optimization Environment , 2004 .

[17]  Lawrence V. Snyder,et al.  Facility location under uncertainty: a review , 2006 .

[18]  Mark S. Daskin,et al.  Strategic facility location: A review , 1998, Eur. J. Oper. Res..

[19]  T.-C. Lai,et al.  Sequencing with uncertain numerical data for makespan minimisation , 1999, J. Oper. Res. Soc..

[20]  Jun Lin,et al.  Robust multi-market newsvendor models with interval demand data , 2011, Eur. J. Oper. Res..

[21]  Adam Kasperski,et al.  Discrete Optimization with Interval Data - Minmax Regret and Fuzzy Approach , 2008, Studies in Fuzziness and Soft Computing.

[22]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[23]  Willy Herroelen,et al.  Project scheduling under uncertainty: Survey and research potentials , 2005, Eur. J. Oper. Res..

[24]  J. Arroyo,et al.  A Risk-Based Approach for Transmission Network Expansion Planning Under Deliberate Outages , 2010, IEEE Transactions on Power Systems.

[25]  Panagiotis Kouvelis,et al.  Robust scheduling to hedge against processing time uncertainty in single-stage production , 1995 .

[26]  Mauro Dell'Amico,et al.  Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.

[27]  Amine Mahjoub,et al.  Scheduling with uncertainties on new computing platforms , 2011, Comput. Optim. Appl..

[28]  Frank Werner,et al.  Mean flow time minimization with given bounds of processing times , 2004, Eur. J. Oper. Res..

[29]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[30]  Frank Werner,et al.  Optimal makespan scheduling with given bounds of processing times , 1997 .

[31]  W. A. Horn Technical Note - Minimizing Average Flow Time with Parallel Machines , 1973, Oper. Res..

[32]  Chung-Cheng Lu,et al.  Robust scheduling on a single machine to minimize total flow time , 2012, Comput. Oper. Res..

[33]  Jian Yang,et al.  On the Robust Single Machine Scheduling Problem , 2002, J. Comb. Optim..