Implicit-Explicit Finite-Difference Lattice Boltzmann Method For Compressible Flows

We propose an implicit-explicit finite-difference lattice Boltzmann method for compressible flows in this work. The implicit-explicit Runge–Kutta scheme, which solves the relaxation term of the discrete velocity Boltzmann equation implicitly and other terms explicitly, is adopted for the time discretization. Owing to the characteristic of the collision invariants in the lattice Boltzmann method, the implicitness can be completely eliminated, and thus no iteration is needed in practice. In this fashion, problems (no matter stiff or not) can be integrated quickly with large Courant–Friedriche–Lewy numbers. As a result, with our implicit-explicit finite-difference scheme the computational convergence rate can be significantly improved compared with previous finite-difference and standard lattice Boltzmann methods. Numerical simulations of the Riemann problem, Taylor vortex flow, Couette flow, and oscillatory compressible flows with shock waves show that our implicit-explicit finite-difference lattice Boltzmann method is accurate and efficient. In addition, it is demonstrated that with the proposed scheme non-uniform meshes can also be implemented with ease.

[1]  S. Succi,et al.  Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method , 1989 .

[2]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[3]  Victor Sofonea,et al.  Viscosity of finite difference lattice Boltzmann models , 2003 .

[4]  Taehun Lee,et al.  A characteristic Galerkin method for discrete Boltzmann equation , 2001 .

[5]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[6]  Chen Yaosong,et al.  Simple lattice Boltzmann model for simulating flows with shock wave , 1999 .

[7]  Zhaoli Guo,et al.  Explicit finite-difference lattice Boltzmann method for curvilinear coordinates. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Chen,et al.  Lattice Boltzmann thermohydrodynamics. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[10]  A. Xu Finite-difference lattice-Boltzmann methods for binary fluids. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Shiyi Chen,et al.  A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit , 1998 .

[12]  Shi Jin,et al.  Physical symmetry and lattice symmetry in the lattice Boltzmann method , 1997 .

[13]  Hudong Chen VOLUMETRIC FORMULATION OF THE LATTICE BOLTZMANN METHOD FOR FLUID DYNAMICS : BASIC CONCEPT , 1998 .

[14]  W. Tao,et al.  Thermal boundary condition for the thermal lattice Boltzmann equation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  S. Succi,et al.  ACCELERATED LATTICE BOLTZMANN SCHEME FOR STEADY-STATE FLOWS , 2003 .

[16]  Kun Xu,et al.  NUMERICAL SIMULATIONS OF RESONANT OSCILLATIONS IN A TUBE , 2001 .

[17]  S. Chou,et al.  Finite-volume lattice Boltzmann method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[19]  Akiyama,et al.  Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Chuguang Zheng,et al.  A coupled lattice BGK model for the Boussinesq equations , 2002 .

[21]  Sauro Succi,et al.  Lattice Boltzmann simulation of open flows with heat transfer , 2003 .

[22]  Raffaele Tripiccione,et al.  LBE SIMULATIONS OF RAYLEIGH-BÉNARD CONVECTION ON THE APE100 PARALLEL PROCESSOR , 1993 .

[23]  M. Tsutahara,et al.  Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Ya-Ling He,et al.  Gas slippage effect on microscale porous flow using the lattice Boltzmann method. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  A Lamura,et al.  Finite-difference lattice Boltzmann model with flux limiters for liquid-vapor systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  B. Shi,et al.  An extrapolation method for boundary conditions in lattice Boltzmann method , 2002 .

[27]  W. Tao,et al.  SIMULATION OF TWO-DIMENSIONAL OSCILLATING FLOW USING THE LATTICE BOLTZMANN METHOD , 2006 .

[28]  Gabriella Puppo,et al.  Implicit–Explicit Schemes for BGK Kinetic Equations , 2007, J. Sci. Comput..

[29]  W. Durham,et al.  Fracture flow simulation using a finite-difference lattice Boltzmann method. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Wei Shyy,et al.  On the Finite Difference-Based Lattice Boltzmann Method in Curvilinear Coordinates , 1998 .

[31]  James D. Sterling,et al.  Accuracy of Discrete-Velocity BGK Models for the Simulation of the Incompressible Navier-Stokes Equations , 1993, comp-gas/9307003.

[32]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[33]  Sauro Succi,et al.  Unstructured lattice Boltzmann equation with memory , 2006, Math. Comput. Simul..

[34]  Michihisa Tsutahara,et al.  Lattice Boltzmann method for the compressible Euler equations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  M. A. Il’gamov,et al.  DEVELOPMENT OF LONGITUDINAL GAS OSCILLATIONS IN A CLOSED TUBE , 1996 .

[36]  Raoyang Zhang,et al.  COMPUTING STEADY STATE FLOWS WITH AN ACCELERATED LATTICE BOLTZMANN TECHNIQUE , 2002 .

[37]  Michihisa Tsutahara,et al.  Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Chuguang Zheng,et al.  Thermal lattice Boltzmann equation for low Mach number flows: decoupling model. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[40]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[41]  S. Succi,et al.  The lattice Boltzmann equation on irregular lattices , 1992 .

[42]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[43]  Zhaoli Guo,et al.  Finite-difference-based lattice Boltzmann model for dense binary mixtures. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Ernst Rank,et al.  Implicit discretization and nonuniform mesh refinement approaches for FD discretizations of LBGK Models , 1998 .