brms: An R Package for Bayesian Multilevel Models Using Stan

The brms package implements Bayesian multilevel models in R using the probabilistic programming language Stan. A wide range of distributions and link functions are supported, allowing users to fit - among others - linear, robust linear, binomial, Poisson, survival, ordinal, zero-inflated, hurdle, and even non-linear models all in a multilevel context. Further modeling options include autocorrelation of the response variable, user defined covariance structures, censored data, as well as meta-analytic standard errors. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their beliefs. In addition, model fit can easily be assessed and compared with the Watanabe-Akaike information criterion and leave-one-out cross-validation.

[1]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[2]  Creutz Global Monte Carlo algorithms for many-fermion systems. , 1988, Physical review. D, Particles and fields.

[3]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[4]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[5]  S. Wood Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models , 2004 .

[6]  Henrik Singmann,et al.  afex – Analysis of Factorial EXperiments , 2015 .

[7]  E. Ionides Truncated Importance Sampling , 2008 .

[8]  R. Christensen Regression Models for Ordinal Data Introducing R-package ordinal , 2011 .

[9]  P. Gustafson,et al.  Conservative prior distributions for variance parameters in hierarchical models , 2006 .

[10]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[11]  Helen Brown,et al.  Applied Mixed Models in Medicine , 2000, Technometrics.

[12]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[13]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[14]  Robert E. Kass,et al.  A default conjugate prior for variance components in generalized linear mixed models (comment on article by Browne and Draper) , 2006 .

[15]  McGilchrist Ca,et al.  Regression with frailty in survival analysis. , 1991 .

[16]  A. Linde DIC in variable selection , 2005 .

[17]  D. Andrich A rating formulation for ordered response categories , 1978 .

[18]  James G. Scott,et al.  Handling Sparsity via the Horseshoe , 2009, AISTATS.

[19]  Jarrod Had MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package , 2010 .

[20]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[21]  Sophia Rabe-Hesketh,et al.  A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models , 2013, Psychometrika.

[22]  Miguel A. Juárez,et al.  Model-Based Clustering of Non-Gaussian Panel Data Based on Skew-t Distributions , 2010 .

[23]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[24]  P. McCullagh Regression Models for Ordinal Data , 1980 .

[25]  John Fox,et al.  Robust Regression in R An Appendix to An R Companion to Applied Regression, Second Edition , 2011 .

[26]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[27]  Aki Vehtari,et al.  Efficient implementation of leave-one-out cross-validation and WAIC for evaluating fitted Bayesian models , 2015 .

[28]  G. Tutz Sequential item response models with an ordered response , 1990 .

[29]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[30]  R. Tibshirani,et al.  Generalized Additive Models , 1986 .

[31]  L. Andries van der Ark,et al.  Relationships and Properties of Polytomous Item Response Theory Models , 2001 .

[32]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[33]  Dorota Kurowicka,et al.  Generating random correlation matrices based on vines and extended onion method , 2009, J. Multivar. Anal..

[34]  G. Masters A rasch model for partial credit scoring , 1982 .

[35]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[36]  Joseph Hilbe,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .

[37]  Eugene Demidenko,et al.  Mixed Models: Theory and Applications with R , 2013 .

[38]  M. Plummer Penalized loss functions for Bayesian model comparison. , 2008, Biostatistics.

[39]  C. Mcgilchrist,et al.  Regression with frailty in survival analysis. , 1991, Biometrics.

[40]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[41]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[42]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[43]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[44]  J Whitehead,et al.  A random effects model for ordinal responses from a crossover trial. , 1991, Statistics in medicine.

[45]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[47]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[48]  Hong Chang,et al.  Model Determination Using Predictive Distributions with Implementation via Sampling-Based Methods , 1992 .

[49]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[50]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[51]  Sumio Watanabe,et al.  Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory , 2010, J. Mach. Learn. Res..

[52]  J. Gabry,et al.  Bayesian Applied Regression Modeling via Stan , 2016 .

[53]  P. Damlen,et al.  Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .

[54]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[55]  Erling B. Andersen,et al.  Sufficient statistics and latent trait models , 1977 .

[56]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[57]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[58]  D. Andrich Application of a Psychometric Rating Model to Ordered Categories Which Are Scored with Successive Integers , 1978 .

[59]  R. Kass,et al.  Reference Bayesian Methods for Generalized Linear Mixed Models , 2000 .

[60]  T. Yee The VGAM Package for Categorical Data Analysis , 2010 .