Dualism of the 4f electrons and its relation to high-temperature antiferromagnetism in the heavy-fermion compound YbCoC2

We report on the study of the noncentrosymmetric ternary carbide ${\mathrm{YbCoC}}_{2}$. Our magnetization, specific heat, resistivity, and neutron diffraction measurements consistently show that the system behaves as a heavy-fermion compound, displaying an amplitude-modulated magnetic structure below the N\'eel temperature reaching ${T}_{\mathrm{N}}=33$ K under pressure. Such a large value, being the highest among the Yb-based systems, is explained in the light of our ab initio calculations, which show that the $4f$ electronic states of Yb have a dual nature, i.e., due to their strong hybridization with the $3d$ states of Co, $4f$ states expose both localized and itinerant properties.

[1]  E. Ressouche,et al.  Single-crystal neutron diffraction study of hexagonal multiferroic YbMnO3 under a magnetic field , 2018, Physical Review B.

[2]  E. Bauer,et al.  Ultrahigh-resolution neutron spectroscopy of low-energy spin dynamics in UGe2 , 2018, Physical review B.

[3]  Hideaki Yoshimura,et al.  Competition between Superconductivity and Magnetism in Non-centrosymmetric (La1−xCex)NiC2 , 2017 .

[4]  Y. Uwatoko,et al.  Pressure-induced magnetic transition exceeding 30 K in the Yb-based heavy-fermion β−YbAlB4 , 2016, 1612.01800.

[5]  B. Roessli,et al.  A novel type of splayed ferromagnetic order observed in Yb2Ti2O7 , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  H. Kitazawa,et al.  Magnetic structure of the ferromagnetic Kondo-lattice compounds YbPtGe and YbPdGe , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  P. Coleman,et al.  Strange metal without magnetic criticality , 2015, Science.

[8]  L. Harriger,et al.  Fragile antiferromagnetism in the heavy-fermion compound YbBiPt , 2014, 1403.0526.

[9]  A. Pikul,et al.  Dualism of the 5felectrons of the ferromagnetic superconductor UGe2as seen in magnetic, transport, and specific-heat data , 2012 .

[10]  L. F. Barquín,et al.  YbNi2: A heavy fermion ferromagnet , 2012 .

[11]  D. L. Wang,et al.  Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics , 2012, Proceedings of the National Academy of Sciences.

[12]  C. Krellner,et al.  Insight into the f-derived Fermi surface of the heavy-fermion compound YbRh2Si2. , 2011, Physical review letters.

[13]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[14]  K. Katoh,et al.  Magnetic and Transport Properties of Single-Crystal YbPtGe , 2009 .

[15]  Kristjan Haule,et al.  Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn 5 , CeCoIn 5 , and CeRhIn 5 , 2009, 0907.0195.

[16]  K. Haule Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base , 2006, cond-mat/0612172.

[17]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[18]  V. Sidorov,et al.  High-pressure helium gas apparatus and hydrostatic toroid cell for low-temperatures applications , 2005 .

[19]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[20]  H Germany,et al.  The dual nature of 5f electrons and the origin of heavy fermions in U compounds , 2002, cond-mat/0211706.

[21]  R. Ribeiro,et al.  Synthesis and properties of YbB2 , 2002, cond-mat/0211288.

[22]  A. Yaouanc,et al.  Evidence for weak itinerant long-range magnetic correlations in UGe2. , 2002, Physical review letters.

[23]  Garching,et al.  Magnetic-field induced quantum critical point in YbRh(2)Si(2). , 2002, Physical review letters.

[24]  Ōnuki Yoshichika,et al.  Heavy Fermions in YbAl 3 Studied by the de Haas-van Alphen Effect , 2000 .

[25]  J. Akimitsu,et al.  Magnetic property of CeNiC2 studied by macroscopic and microscopic measurements , 1997 .

[26]  G. Will,et al.  Magnetic structures of rare earths R in RCoC2 and RNiC2 compounds , 1997 .

[27]  Takashi Takahashi,et al.  Dual Character of 5f Electrons in UPd 2Al 3 Observed by High-Resolution Photoemission Spectroscopy , 1996 .

[28]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[29]  S. Matsuo,et al.  Magnetic properties of the ternary carbide DyCoC2 studied by magnetization measurements, neutron diffraction and 161 Dy Mössbauer spectroscopy , 1995 .

[30]  Blanco,et al.  Specific heat of CeNixPt1-x pseudobinary compounds and related dilute alloys. , 1994, Physical review. B, Condensed matter.

[31]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[32]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[33]  K. Katoh,et al.  Magnetic Properties of New Ternary Rare Earth Compounds RPt(Pd)Sb , 1992 .

[34]  Ott,et al.  Massive electron state in YbBiPt. , 1991, Physical review letters.

[35]  Blanco,et al.  Specific heat in some gadolinium compounds. II. Theoretical model. , 1991, Physical review. B, Condensed matter.

[36]  G. Will,et al.  Magnetic properties of RCoC2 (R = Y, Gd,Tb) compounds , 1990 .

[37]  Yang,et al.  Strong electronic correlations in a new class of Yb-based compounds: YbXCu4 (X=Ag,Au,Pd). , 1987, Physical review. B, Condensed matter.

[38]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[39]  W. Jeitschko,et al.  Ternary carbides of the rare earth and iron group metals with CeCoC2- and CeNiC2-type structure , 1986 .

[40]  H. Rudigier,et al.  Low-temperature phase transitions in Yb monopnictides , 1985 .

[41]  Weidner,et al.  Magnetic order and other phase transitions in mixed-valent YbPd. , 1985, Physical review letters.

[42]  J. Willis,et al.  UNUSUAL MAGNETIC-BEHAVIOR OF TMIR2 AND YBIR2 , 1985 .

[43]  U. Walter,et al.  Magnetic excitations and quasielastic linewidths in YbBe13 from neutron scattering , 1985 .

[44]  P. Weidner,et al.  Magnetic ordering of mixed valent Yb3Pd4 , 1985 .

[45]  A. Tsvyashchenko High pressure synthesis of RE6Cu23 compounds (RE Tb, Dy, Yb, Lu) , 1984 .

[46]  D. Koelling,et al.  A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions , 1980 .

[47]  S. Doniach The Kondo lattice and weak antiferromagnetism , 1977 .

[48]  P. D. Gennes Polarisation de charge (ou de spin) au voisinage d'une impureté dans un alliage , 1962 .

[49]  K. Schwarz,et al.  WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties , 2019 .

[50]  K. Kindo,et al.  Electronic and Magnetic Properties in Heavy Fermion Ferromagnet YbPdGe , 2012 .

[51]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[52]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .