Three new VHS-DES quasars at 6.7 6.5

We report the results from a search for z > 6.5 quasars using the Dark Energy Survey (DES) Year 3 dataset combined with the VISTA Hemisphere Survey (VHS) and WISE All-Sky Survey. Our photometric selection method is shown to be highly efficient in identifying clean samples of high-redshift quasars leading to spectroscopic confirmation of three new quasars - VDESJ 0244-5008 (z=6.724), VDESJ 0020-3653 (z=6.834) and VDESJ 0246-5219 (z=6.90) - which were selected as the highest priority candidates in the survey data without any need for additional follow-up observations. The new quasars span the full range in luminosity covered by other z>6.5 quasar samples (J AB = 20.2 to 21.3; M1450 = -25.6 to -26.6). We have obtained spectroscopic observations in the near infrared for VDESJ 0244-5008 and VDESJ 0020-3653 as well as our previously identified quasar, VDESJ 0224-4711 at z=6.50 from Reed et al. (2017). We use the near infrared spectra to derive virial black-hole masses from the full-width-half-maximum of the MgII line. These black-hole masses are ~ 1 - 2 x 10$^9$M$_\odot$. Combining with the bolometric luminosities of these quasars of L$_{\rm{bol}}\simeq$ 1 - 3 x 10$^{47}$implies that the Eddington ratios are high - $\simeq$0.6-1.1. We consider the C\textrm{\textsc{IV}} emission line properties of the sample and demonstrate that our high-redshift quasars do not have unusual C\textrm{\textsc{IV}} line properties when compared to carefully matched low-redshift samples. Our new DES+VHS $z>6.5$ quasars now add to the growing census of luminous, rapidly accreting supermassive black-holes seen well into the epoch of reionisation.

[1]  R. G. McMahon,et al.  A new bright z = 6.82 quasar discovered with VISTA: VHS J0411–0907 , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  Xiaohui Fan,et al.  Exploring Reionization-era Quasars. IV. Discovery of Six New z ≳ 6.5 Quasars with DES, VHS, and unWISE Photometry , 2018, The Astronomical Journal.

[3]  A. Myers,et al.  . 4 . z . 6 . 9 with DESI Legacy Imaging Surveys and UKIRT Hemisphere Survey and Quasar Luminosity Function at z ∼ 6 . 7 , 2018, 1810.11926.

[4]  L. Ho,et al.  Gemini GNIRS Near-infrared Spectroscopy of 50 Quasars at z ≳ 5.7 , 2018, The Astrophysical Journal.

[5]  M. Sullivan,et al.  The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.

[6]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[7]  H. Rix,et al.  Physical Properties of 15 Quasars at z ≳ 6.5 , 2017, 1710.01251.

[8]  Adam D. Myers,et al.  First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey , 2017, 1703.07490.

[9]  J. Prochaska,et al.  Implications of z ∼ 6 Quasar Proximity Zones for the Epoch of Reionization and Quasar Lifetimes , 2017, 1703.02539.

[10]  Sergey E. Koposov,et al.  Eight new luminous z >= 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations , 2017, 1701.04852.

[11]  G. Richards,et al.  Correcting C iv-Based Virial Black Hole Masses , 2016, 1610.08977.

[12]  Xiaohui Fan,et al.  THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT z > 5.7 , 2016, 1610.05369.

[13]  G. Richards,et al.  C iv emission-line properties and systematic trends in quasar black hole mass estimates , 2016, 1606.02726.

[14]  R. McMahon,et al.  BRIGHT [C ii] AND DUST EMISSION IN THREE z > 6.6 QUASAR HOST GALAXIES OBSERVED BY ALMA , 2015, 1511.07432.

[15]  R. McMahon,et al.  First discoveries of z ̃ 6 quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey , 2015, 1507.00726.

[16]  Sergey E. Koposov,et al.  Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey , 2014, 1407.3801.

[17]  P. Hewett,et al.  BLACK HOLE MASS ESTIMATES AND EMISSION-LINE PROPERTIES OF A SAMPLE OF REDSHIFT z > 6.5 QUASARS , 2013, 1311.3260.

[18]  Queen Mary,et al.  DISCOVERY OF THREE z > 6.5 QUASARS IN THE VISTA KILO-DEGREE INFRARED GALAXY (VIKING) SURVEY , 2013, 1311.3666.

[19]  W. Schmidt,et al.  Black hole formation in the early Universe , 2013, 1304.0962.

[20]  Celine Peroux,et al.  The large area KX quasar catalogue – I. Analysis of the photometric redshift selection and the complete quasar catalogue , 2012, 1206.1434.

[21]  Caltech,et al.  IRON AND α-ELEMENT PRODUCTION IN THE FIRST ONE BILLION YEARS AFTER THE BIG BANG ,, , 2011, 1111.4843.

[22]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[23]  H. Rix,et al.  EVIDENCE FOR NON-EVOLVING Fe ii/Mg ii RATIOS IN RAPIDLY ACCRETING z ∼ 6 QSOs , 2011, 1106.5501.

[24]  P. Hewett,et al.  Improved redshifts for SDSS quasar spectra , 2010, 1003.3017.

[25]  Cambridge,et al.  Growing the first bright quasars in cosmological simulations of structure formation , 2009, 0905.1689.

[26]  T. O. S. University,et al.  MASS FUNCTIONS OF THE ACTIVE BLACK HOLES IN DISTANT QUASARS FROM THE LARGE BRIGHT QUASAR SURVEY, THE BRIGHT QUASAR SURVEY, AND THE COLOR-SELECTED SAMPLE OF THE SDSS FALL EQUATORIAL STRIPE , 2009, 0904.3348.

[27]  J. Bolton,et al.  The nature and evolution of the highly ionized near-zones in the absorption spectra of z≃ 6 quasars , 2006, astro-ph/0607331.

[28]  P. Hewett,et al.  Simulating wide-field quasar surveys from the optical to near-infrared , 2005, astro-ph/0512325.

[29]  What controls the C iv line profile in active galactic nuclei , 2004, astro-ph/0409196.

[30]  J. Chiang,et al.  Accretion Disk Winds from Active Galactic Nuclei , 1995 .

[31]  A. Königl,et al.  DISK-DRIVEN HYDROMAGNETIC WINDS AS A KEY INGREDIENT OF ACTIVE GALACTIC NUCLEI UNIFICATION SCHEMES , 1994 .