Macroscopic Internal Variables and Mesoscopic Theory: A Comparison Considering Liquid Crystals †

Internal and mesoscopic variables differ fundamentally from each other: both are state space variables, but mesoscopic variables are additionally equipped with a distribution function introducing a statistical item into consideration which is missing in connection with internal variables. Thus, the alignment tensor of the liquid crystal theory can be introduced as an internal variable or as one generated by a mesoscopic background using the microscopic director as a mesoscopic variable. Because the mesoscopic variable is part of the state space, the corresponding balance equations change into mesoscopic balances, and additionally an evolution equation of the mesoscopic distribution function appears. The flexibility of the mesoscopic concept is not only demonstrated for liquid crystals, but is also discussed for dipolar media and flexible fibers.

[1]  S. Hess,et al.  On the theory of irreversible processes in molecular liquids and liquid crystals, nonequilibrium phenomena associated with the second and fourth rank alignment tensors , 1980 .

[2]  J. Verhás A thermodynamic approach to viscoelasticity and plasticity , 1984 .

[3]  W. Muschik Objectivity and frame indifference of acceleration-sensitive materials , 2012 .

[4]  Ván,et al.  Mesoscopic dynamics of microcracks , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  W. Muschik,et al.  Mesoscopic theory of microcracks , 2002 .

[6]  W. Muschik,et al.  Statistical foundation of macroscopic balances for liquid crystals in alignment tensor formulation , 1991 .

[7]  P. Gennes,et al.  Simple Views On Condensed Matter , 1992 .

[8]  J. Meixner Zur Thermodynamik der irreversiblen Prozesse , 1943 .

[9]  J. L. Ericksen,et al.  Anisotropic fluids , 1959 .

[10]  W. Muschik,et al.  A continuum theory for liquid crystals describing different degrees of orientational order , 1993 .

[11]  S. Hess Irreversible Thermodynamics of Nonequilibrium Alignment Phenomena in Molecular Liquids and in Liquid Crystals , 1975 .

[12]  C. Papenfuss,et al.  A mesoscopic approach to diffusion phenomena in mixtures , 2005, cond-mat/0504512.

[13]  R. Hornreich,et al.  Landau theory of cholesteric blue phases , 1983 .

[14]  Griffith cracks in the mesoscopic microcrack theory , 2002, cond-mat/0211207.

[15]  H. Grebel,et al.  Landau theory of cholesteric blue phases: The role of higher harmonics , 1984 .

[16]  J. Ericksen Liquid crystals with variable degree of orientation , 1991 .

[17]  Gérard A. Maugin,et al.  THERMODYNAMICS WITH INTERNAL VARIABLES , 1999 .

[18]  P. Ván Exploiting the second law in weakly non-local continuum physics , 2005 .

[19]  E. A. Milne,et al.  The Nature of Thermodynamics , 1942, Nature.

[20]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[21]  C. Papenfuss Theory of liquid crystals as an example of mesoscopic continuum mechanics , 2000 .

[22]  Wolfgang Muschik,et al.  A sketch of continuum thermodynamics , 2001 .

[23]  W. Muschik,et al.  Orientation-Balances for Liquid Crystals and Their Representation by Alignment Tensors , 1991 .

[24]  W. Muschik,et al.  Systematic remarks on objectivity and frame-indifference, liquid crystal theory as an example , 2008 .

[25]  C. Papenfuss,et al.  Scalar, vectorial and tensorial damage parameters from the mesoscopic background , 2007, 0712.0087.

[26]  Kuo-Ching Chen On the macroscopic–mesoscopic mixture of a magnetorheological fluid , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[28]  W. Dreyer,et al.  Maximisation of the entropy in non-equilibrium , 1987 .

[29]  W. H. Jeu,et al.  Thermotropic Liquid Crystals, Fundamentals , 1988 .

[30]  Raphael Aronson,et al.  Theory and application of the Boltzmann equation , 1976 .

[31]  Gérard A. Maugin,et al.  The thermomechanics of nonlinear irreversible behaviors : an introduction , 1999 .

[32]  C. Papenfuss,et al.  Concepts of Mesoscopic Continuum Physics With Application to Biaxial Liquid Crystals , 2000 .

[33]  D. Monselesan,et al.  An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals , 1987 .

[34]  F. M. Leslie,et al.  SOME CONSTITUTIVE EQUATIONS FOR ANISOTROPIC FLUIDS , 1966 .

[35]  Orientational Order in Free Standing Liquid Crystalline Films and Derivation of a Closure Relation for Higher Order Alignment Tensors , 1999 .

[36]  H. Herrmann,et al.  The effect of approximation accuracy of the orientation distribution function on the elastic properties of short fibre reinforced composites , 2016 .

[37]  P V An,et al.  Weakly nonlocal irreversible thermodynamics , 2003, Annalen der Physik.

[38]  Kuo-Ching Chen A Mesoscopic Continuum Description of Dry Granular Materials , 2008 .

[39]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[40]  C. Papenfuss,et al.  Mesoscopic continuum thermodynamics for mixtures of particles with orientation , 2017, Journal of Mathematical Chemistry.

[41]  Epifanio G. Virga,et al.  Variational Theories for Liquid Crystals , 2018 .

[42]  On Symmetric irreducible tensors in d-dimensions , 1998 .

[43]  G. Maugin The Thermomechanics of Plasticity and Fracture , 1992 .

[44]  P. Ván The Ginzburg-Landau equation as a consequence of the Second Law , 2005 .

[45]  F. M. Leslie Some constitutive equations for liquid crystals , 1968 .

[46]  C. Papenfuss A closure relation for the higher order alignment tensors in liquid crystal theory and the alignment-fabric tensors in damage mechanics from a statistical background , 2004 .

[47]  G. Vojta,et al.  Extended Irreversible Thermodynamics , 1998 .

[48]  H. Herrmann,et al.  An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres , 2015 .

[49]  C. Papenfuss,et al.  Dynamics of the Size and Orientation Distribution of Microcracks and Evolution of Macroscopic Damage Parameters , 2007 .

[50]  G. Maugin,et al.  Thermodynamic Modelling of Polymers in Solution , 1988 .

[51]  J. Verhäs Irreversible thermodynamics for the rheological properties of colloids , 1987 .

[52]  W. Muschik,et al.  Orientational balances for nematic liquid crystals describing different degrees of orientational order , 1992 .

[53]  C. Papenfuss,et al.  Sketch of the mesoscopic description of nematic liquid crystals , 2004 .