Hydrogen cyanide: theory and experiment

[1]  J. Watson Simplification of the molecular vibration-rotation hamiltonian , 2002 .

[2]  Albert,et al.  Infrared Transitions of H12C14N and H12C15N between 500 and 10 000 cm-1 , 1996, Journal of molecular spectroscopy.

[3]  Jan M. L. Martin THE TOTAL ATOMIZATION ENERGY AND HEAT OF FORMATION OF HCN(G) , 1996 .

[4]  Jan M. L. Martin Ab initio total atomization energies of small molecules — towards the basis set limit , 1996 .

[5]  John F. Stanton,et al.  Perturbative treatment of triple excitations in coupled‐cluster calculations of nuclear magnetic shielding constants , 1996 .

[6]  W. Quapp,et al.  The CN Mode of HCN: A Comparative Study of the Variation of the Transition Dipole and Herman-Wallis Constants for Seven Isotopomers and the Influence of Vibration-Rotation Interaction , 1995 .

[7]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[8]  Jan M. L. Martin ON THE EFFECT OF CORE CORRELATION ON THE GEOMETRY AND HARMONIC FREQUENCIES OF SMALL POLYATOMIC-MOLECULES , 1995 .

[9]  K. Morokuma,et al.  An ab initio study of the ground and first excited state of HCN ↔ HNC isomerization and a calculation of the HNC A → X fluorescence spectrum , 1995 .

[10]  M. Horn,et al.  Ab initio calculations of stretching vibrational transitions for the linear molecules HCN, HNC, HCCF and HC3N up to high overtones , 1995 .

[11]  B. Lévy,et al.  Ab initio study of the potential energy surfaces for the reaction N(4Su +CH(X 2IIr) → CN(X 2Σ+, A 2IIi + H(2Sg) , 1994 .

[12]  Peter J. Knowles,et al.  Perturbative corrections to account for triple excitations in closed and open shell coupled cluster theories , 1994 .

[13]  P. Taylor,et al.  Basis set convergence for geometry and harmonic frequencies. Are h functions enough , 1994 .

[14]  J. Gauss,et al.  Analytic energy gradients for the equation‐of‐motion coupled‐cluster method: Implementation and application to the HCN/HNC system , 1994 .

[15]  Kevin K. Lehmann,et al.  Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta , 1993 .

[16]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[17]  N. Handy,et al.  Vibration–rotation variational calculations: Precise results on HCN up to 25 000 cm−1 , 1993 .

[18]  Christopher E. Dateo,et al.  Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN/HNC, and a simulation of the ÖX̃ emission spectrum , 1993 .

[19]  G. Bacskay,et al.  Ab initio potential energy surface and vibrational frequencies of HCN , 1993 .

[20]  P. Botschwina,et al.  Ab initio spectroscopic constants and the equilibrium geometry of HCCF , 1993 .

[21]  Christopher E. Dateo,et al.  A global ab initio potential for HCN/HNC, exact vibrational energies, and comparison to experiment , 1992 .

[22]  Keith N. Rosser,et al.  Dissociation dynamics of HCN(DCN) following photoexcitation at 121.6 nm , 1992 .

[23]  M. Jacox,et al.  The vibrational spectra of molecular ions isolated in solid neon. IX. HCN+, HNC+, and CN− , 1992 .

[24]  N. Handy,et al.  The equilibrium structure of HCN , 1992 .

[25]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[26]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[27]  K. Peterson,et al.  Configuration interaction spectroscopic properties of X 2Σ+ HNC+ and X 2Π HCN+ , 1990 .

[28]  N. Handy,et al.  Variational calculations of rovibrational states: a precise high-energy potential surface for HCN , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[29]  G. Bickel,et al.  The 1900 Å band system of HCN and its isotopes. One or two excited states , 1989 .

[30]  K. Lehmann,et al.  Fourier transform spectra of overtone bands of HCN from 5400 to 15100 cm−1 , 1989 .

[31]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[32]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[33]  S. Peyerimhoff,et al.  Ab initio CI study of the vibrational structure of the 1 1Σ− (1 1 A″)←X and 1 1Δ (2 1 A′, 2 1 A″)←X electronic transitions in HCN and DCN , 1988 .

[34]  P. Knowles,et al.  An efficient method for the evaluation of coupling coefficients in configuration interaction calculations , 1988 .

[35]  R. Woods Microwave spectroscopy of molecular ions in the laboratory and in space , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[36]  A. Jameson,et al.  Gas-phase 13C chemical shifts in the zero-pressure limit: refinements to the absolute shielding scale for 13C , 1987 .

[37]  S. Peyerimhoff,et al.  Potential surfaces for valence-type singlet electronic states of the HCN molecule , 1987 .

[38]  G. Bickel,et al.  The Ã1A″(S1) excited electronic states of HCN and DCN: Isotopic evidence that unifies experiment and theory , 1984 .

[39]  Y. Hsu,et al.  The predissociation dynamics of the Ã1A″ state of HCN and DCN , 1984 .

[40]  P. Bunker,et al.  A theoretical study of the Ã1A″-X̃1Σ+ electronic band system of HCNCNH , 1984 .

[41]  W. Ebenstein,et al.  Dipole moment and hyperfine properties of the ground state and the C–H excited vibrational state of HCN , 1984 .

[42]  H. Gould,et al.  Polymer chain statistics and universality: Crossover from random to self‐avoiding walks , 1984 .

[43]  H. Schaefer,et al.  Where to look for the electronic spectrum of hydrogen isocyanide, HNC , 1984 .

[44]  P. Botschwina Infrared intensities of polyatomic molecules calculated from SCEP dipole-moment functions and anharmonic vibrational wavefunctions. I. Stretching vibrations of the linear molecules HCN, HCP and C2N2 , 1983 .

[45]  P. Botschwina Vibrational frequencies from anharmonic ab initio/empirical potential energy functions. III. Stretching vibrations of hydrogen cyanide and acetylenes , 1982 .

[46]  S. Wille,et al.  15N nuclear magnetic shielding scale from gas phase studies , 1980 .

[47]  L. Cederbaum,et al.  Vibronic coupling in linear molecules and linear-to-bent transitions: HCN , 1979 .

[48]  S. Peyerimhoff,et al.  Abinitio calculation of the vibrational structure in the electronic spectra of HCN and DCN between 1700 and 2000 Å , 1977 .

[49]  G. Schwenzer,et al.  Confirmation of the discrepancy between theory and experiment for the B̃1A″ state of HCN , 1975 .

[50]  N. Handy,et al.  Variational calculation of vibration-rotation energy levels for triatomic molecules , 1975 .

[51]  G. Schwenzer,et al.  Geometries of the excited electronic states of HCN , 1974 .

[52]  D. C. Frost,et al.  The photoelectron spectrum of HCP and comments on the first photoelectron band of HCN , 1973 .

[53]  I. Mills,et al.  The anharmonic force field and equilibrium structure of HCN and HCP , 1973 .

[54]  J. Hollas,et al.  Geometry of C2N2 + and HCN+ from low-energy photoelectron spectroscopy , 1972 .

[55]  P. Bunker,et al.  The bending-rotation Hamiltonian for the triatomic molecule and application to HCN and H2O , 1972 .

[56]  G. Winnewisser,et al.  ROTATIONAL CONSTANTS FOR HCN AND DCN. , 1971 .

[57]  J. Watson,et al.  The vibration-rotation hamiltonian of linear molecules , 1970 .

[58]  John F. Stanton,et al.  Coupled-cluster calculations of nuclear magnetic resonance chemical shifts , 1967 .

[59]  D. Lide,et al.  Microwave and Infrared Measurements on HCN and DCN: Observations on l‐Type Resonance Doublets , 1967 .

[60]  G. Herzberg,et al.  ULTRAVIOLET ABSORPTION SPECTRA OF HCN AND DCN: I. THE α—X AND β—X SYSTEMS , 1957 .

[61]  Robert S. Mulliken,et al.  Report on Notation for the Spectra of Polyatomic Molecules , 1955 .

[62]  G. Herzberg,et al.  Infrared and Raman spectra of polyatomic molecules , 1946 .

[63]  Edward Teller,et al.  Electronic Spectra of Polyatomic Molecules , 1941 .

[64]  H. J. Hilgendorff Die Absorptionsspektren von Blausäure, Hydrazin, Äthylen und Ammoniak im Schumann-Gebiet und von Hydrazin im Quarzultraviolett , 1935 .

[65]  Carl Eckart,et al.  Some Studies Concerning Rotating Axes and Polyatomic Molecules , 1935 .

[66]  W. Price The Absorption Spectra of Formaldehyde and Hydrogen Cyanide in the Far Ultraviolet , 1934 .

[67]  Ekkehard Fluck,et al.  Gmelins Handbuch der anorganischen Chemie , 1931, Nature.

[68]  M. Horn,et al.  Ab initio calculations on molecules of interest to interstellar cloud chemistry , 1993 .

[69]  P. Botschwina Anharmonic potential-energy surfaces, vibrational frequencies and infrared intensities calculated from highly correlated wavefunctions , 1988 .

[70]  J. Chandrasekhar,et al.  A theoretical survey of unsaturated or multiply bonded and divalent silicon compounds. Comparison with carbon analogs , 1986 .

[71]  U. Jørgensen,et al.  Effects of HCN molecules in carbon star atmospheres , 1984 .

[72]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[73]  L. Åsbrink,et al.  Photoelectron and electron impact spectrum of HCN , 1975 .

[74]  Arthur G. Maki,et al.  Microwave Spectra of Molecules of Astrophysical Interest VI. Carbonyl Sulfide and Hydrogen Cyanide , 1974 .

[75]  D. W. Turner,et al.  A Discussion on photoelectron spectroscopy - Molecular photoelectron spectroscopy , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[76]  D. R. Stull JANAF thermochemical tables , 1966 .

[77]  W. Price,et al.  The absorption spectra of triple bond molecules in the vacuum ultra violet , 1945 .