Modulation diffraction efficiency of spatial light modulators

We present an analysis of the efficiency of phase diffractive elements displayed onto spatial light modulators as a function of the device modulation. We show uses and strategies to compensate for the efficiency reduction in the presence of modulation defects like coupled amplitude modulation or non ideal phase modulation.

[1]  Alexander Gammerman,et al.  Ridge Regression Learning Algorithm in Dual Variables , 1998, ICML.

[2]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[3]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Qian Du,et al.  A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[5]  Juan Campos,et al.  Effects of Amplitude and Phase Mismatching Errors in the Generation of a Kinoform for Pattern Recognition , 1995 .

[6]  Michel Verleysen,et al.  Mutual information for the selection of relevant variables in spectrometric nonlinear modelling , 2006, ArXiv.

[7]  Jeffrey A. Davis,et al.  Encoding generalized phase functions on Dammann gratings. , 2010, Optics letters.

[8]  R. Kokaly,et al.  Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies , 2009 .

[9]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Chein-I Chang,et al.  Constrained band selection for hyperspectral imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Claudio Iemmi,et al.  Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display. , 2004, Applied optics.

[12]  A Márquez,et al.  Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics. , 2008, Optics express.

[13]  J. M. de Bougrenet de la Tocnaye,et al.  Complex amplitude modulation by use of liquid-crystal spatial light modulators. , 1997, Applied optics.

[14]  Yukio Kosugi,et al.  Particle Swarms for Feature Extraction of Hyperspectral Data , 2007, IEICE Trans. Inf. Syst..

[15]  Michel Verleysen,et al.  Advances in Feature Selection with Mutual Information , 2009, Similarity-Based Clustering.

[16]  D. A. Buralli,et al.  Effects of diffraction efficiency on the modulation transfer function of diffractive lenses. , 1992, Applied optics.

[17]  Adolfo Martínez Usó,et al.  Clustering-Based Hyperspectral Band Selection Using Information Measures , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[18]  R. Juday Optimal realizable filters and the minimum Euclidean distance principle. , 1993, Applied optics.

[19]  Filiberto Pla,et al.  Supervised feature selection by clustering using conditional mutual information-based distances , 2010, Pattern Recognit..

[20]  A Márquez,et al.  The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators. , 2010, Optics express.

[21]  M. Yzuel,et al.  Anamorphic and spatial frequency dependent phase modulation on liquid crystal displays. Optimization of the modulation diffraction efficiency. , 2005, Optics express.

[22]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[23]  William J. Dallas Computer-Generated Holograms , 2006 .

[24]  Roberta E. Martin,et al.  Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests , 2009 .

[25]  Ignacio Moreno,et al.  Extended phase modulation depth in twisted nematic liquid crystal displays. , 2010, Applied optics.

[26]  Chong-Ho Choi,et al.  Input Feature Selection by Mutual Information Based on Parzen Window , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Alexander G. Gray,et al.  Fast kernel conditional density estimation: A dual-tree Monte Carlo approach , 2010, Comput. Stat. Data Anal..