A matrix method for computing Szeged and vertex PI indices of join and composition of graphs

The Szeged index extends the Wiener index for cyclic graphs by counting the number of vertices on both sides of each edge and sum these counts. Klavzar et al. [S. Klavzar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (5) (1996) 45–49] provided an exact formula for computing Szeged index of product of graphs. In this paper, we apply a matrix method to obtain exact formulae for computing the Szeged index of join and composition of graphs. The join and composition of the vertex PI index of graphs are also computed.

[1]  Yeong-Nan Yeh,et al.  The Wiener polynomial of a graph , 1998, math/9801011.

[2]  Ivan Gutman,et al.  WIENER-TYPE TOPOLOGICAL INDICES , 1998 .

[3]  Frank Harary,et al.  Graph Theory , 2016 .

[4]  N. Trinajstic Chemical Graph Theory , 1992 .

[5]  Ali Reza Ashrafi,et al.  Szeged index of some nanotubes , 2008 .

[6]  Ali Reza Ashrafi,et al.  Szeged Index of a Zig-zag Polyhex Nanotube , 2008, Ars Comb..

[7]  Ali Reza Ashrafi,et al.  Vertex and edge PI indices of Cartesian product graphs , 2008, Discret. Appl. Math..

[8]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[9]  Mircea V. Diudea Cluj Matrix Invariants , 1997, J. Chem. Inf. Comput. Sci..

[10]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[11]  Ali Reza Ashrafi,et al.  PI and Szeged Indices of some Benzenoid Graphs Related to Nanostructures , 2007, Ars Comb..

[12]  M. Eliasi,et al.  Szeged index of armchair polyhex nanotubes , 2008 .

[13]  Sandi Klavžar,et al.  The Szeged and the Wiener Index of Graphs , 1996 .

[14]  Milan Randić On generalization of wiener index for cyclic structures , 2002 .

[15]  Andrey A. Dobrynin,et al.  The Szeged Index and an Analogy with the Wiener Index , 1995, J. Chem. Inf. Comput. Sci..

[16]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[17]  Computing PI and Szeged indices of multiple phenylenes and cyclic hexagonal-square chain consisting of mutually isomorphic hexagonal chains , 2007 .

[18]  István Lukovits,et al.  Szeged Index - Applications for Drug Modeling&# , 2005 .

[19]  I. Gutman,et al.  Wiener Index of Hexagonal Systems , 2002 .