Parallel FETI algorithms for mortars

We propose a new version of the FETI algorithm for mortar discretizations based on generalized coupling conditions across the interface. The new algorithm preserves the parallelization properties of, and has the same scalability properties as, the FETI method for continuous finite elements. We compare the numerical performance of the new algorithm with that of other FETI methods for mortars. When mortar conditions are required only on a small part of the interface, while continuity is required elsewhere, we show that the extra storage and extra computational effort required by the parallel algorithm is minimal.

[1]  C. Farhat,et al.  The two-level FETI method for static and dynamic plate problems Part I: An optimal iterative solver for biharmonic systems , 1998 .

[2]  C. Farhat,et al.  A scalable Lagrange multiplier based domain decomposition method for time‐dependent problems , 1995 .

[3]  Andrea Toselli,et al.  A FETI Domain Decomposition Method for Edge Element Approximations in Two Dimensions with Discontinuous Coefficients , 2001, SIAM J. Numer. Anal..

[4]  Jacques-Louis Lions,et al.  Nonlinear partial differential equations and their applications , 1998 .

[5]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[6]  Olof B. Widlund,et al.  DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .

[7]  Z. Dostál,et al.  Solution of contact problems by FETI domain decomposition with natural coarse space projections , 2000 .

[8]  Antonini Macedo,et al.  Two Level Finite Element Method and its Application to the Helmholtz Equation , 1997 .

[9]  Y. Maday,et al.  Two different approaches for matching nonconforming grids: The Mortar Element method and the Feti Method , 1997 .

[10]  O. Widlund,et al.  FETI and Neumann--Neumann Iterative Substructuring Methods: Connections and New Results , 1999 .

[11]  C. Farhat,et al.  A Scalable Substructuring Method By Lagrange Multipliers For Plate Bending Problems , 1996 .

[12]  O. Widlund,et al.  A Domain Decomposition Method With Lagrange Multipliers For Linear Elasticity , 1999 .

[13]  Dan Stefanica,et al.  A Numerical Study of FETI Algorithms for Mortar Finite Element Methods , 2001, SIAM J. Sci. Comput..

[14]  Jan Mandel,et al.  On the convergence of a dual-primal substructuring method , 2000, Numerische Mathematik.

[15]  C. Farhat,et al.  A numerically scalable domain decomposition method for the solution of frictionless contact problems , 2001 .

[16]  Daniel Rixen,et al.  Extended preconditioners for the FETI method applied to constrained problems , 2002 .

[17]  Andrea Toselli,et al.  A FETI Preconditioner for Two Dimensional Edge Element Approximations of Maxwell's Equations on Nonmatching Grids , 2001, SIAM J. Sci. Comput..

[18]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[19]  Dan Stefanica,et al.  Domain Decomposition Methods for Mortar Finite Elements , 2000 .

[20]  A. Toselli,et al.  A FETI Domain Decomposition Method for Maxwell''s Equations with Discontinuous Coefficients in Two Dimensions , 1999 .

[21]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[22]  Dan Stefanica,et al.  FETI and FETI-DP Methods for Spectral and Mortar Spectral Elements: A Performance Comparison , 2002, J. Sci. Comput..

[23]  Olof B. Widlund,et al.  A Domain Decomposition Method with Lagrange Multipliers and Inexact Solvers for Linear Elasticity , 2000, SIAM J. Sci. Comput..

[24]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[25]  Charbel Farhat,et al.  A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems , 2000, Numerische Mathematik.

[26]  C. Farhat,et al.  A scalable dual-primal domain decomposition method , 2000, Numer. Linear Algebra Appl..

[27]  D. Rixen,et al.  A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems , 1999 .