Coalgebraic Predicate Logic

We propose a generalization of first-order logic originating in a neglected work by C.C. Chang: a natural and generic correspondence language for any types of structures which can be recast as Set-coalgebras. We discuss axiomatization and completeness results for two natural classes of such logics. Moreover, we show that an entirely general completeness result is not possible. We study the expressive power of our language, contrasting it with both coalgebraic modal logic and existing first-order proposals for special classes of Set-coalgebras (apart for relational structures, also neighbourhood frames and topological spaces). The semantic characterization of expressivity is based on the fact that our language inherits a coalgebraic variant of the Van Benthem-Rosen Theorem. Basic model-theoretic constructions and results, in particular ultraproducts, obtain for the two classes which allow for completeness--and in some cases beyond that.

[1]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[2]  Corina Cîrstea,et al.  Modal Logics are Coalgebraic , 2008, Comput. J..

[3]  Marc Pauly,et al.  A Modal Logic for Coalitional Power in Games , 2002, J. Log. Comput..

[4]  Dirk Pattinson,et al.  Cut elimination in coalgebraic logics , 2010, Inf. Comput..

[5]  Lutz Schröder A Finite Model Construction for Coalgebraic Modal Logic , 2006, FoSSaCS.

[6]  Johann A. Makowsky,et al.  Completeness Theorems For Modal Model Theory With the Montague-Chang Semantics I , 1977, Math. Log. Q..

[7]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[8]  Fenrong Liu,et al.  Logic in the Community , 2011, ICLA.

[9]  A. R. D. Mathias,et al.  Cambridge Summer School in Mathematical Logic , 1973 .

[10]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[11]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[12]  Edmund K. Burke,et al.  Logic and Its Applications , 2011, Lecture Notes in Computer Science.

[13]  Eric Rosen,et al.  Modal Logic over Finite Structures , 1997, J. Log. Lang. Inf..

[14]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[15]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[16]  C. C. Chang Modal model theory , 1973 .

[17]  Alexander Kurz,et al.  Ultrafilter Extensions for Coalgebras , 2005, CALCO.

[18]  Robert Goldblatt,et al.  An abstract setting for Henkin proofs , 1984 .

[19]  Jörg Flum,et al.  Topological Model Theory , 1980 .

[20]  Dirk Pattinson,et al.  Coalgebraic Correspondence Theory , 2010, FoSSaCS.

[21]  Dirk Pattinson,et al.  Named Models in Coalgebraic Hybrid Logic , 2010, STACS.

[22]  Sam Staton Relating Coalgebraic Notions of Bisimulation , 2009, CALCO.

[23]  Bart Jacobs Predicate Logic for Functors and Monads , 2010 .

[24]  Dmitry Sustretov,et al.  Modal languages for topology: Expressivity and definability , 2006, Ann. Pure Appl. Log..

[25]  Helle Hvid Hansen,et al.  Neighbourhood Structures: Bisimilarity and Basic Model Theory , 2009, Log. Methods Comput. Sci..

[26]  Ian M. Hodkinson,et al.  Hybrid Formulas and Elementarily Generated Modal Logics , 2006, Notre Dame J. Formal Log..

[27]  Dirk Pattinson Expressive Logics for Coalgebras via Terminal Sequence Induction , 2004, Notre Dame J. Formal Log..

[28]  Sergey Yekhanin,et al.  Towards 3-query locally decodable codes of subexponential length , 2008, JACM.

[29]  Joseph Sgro The interior operator logic and product topologies , 1980 .

[30]  Benjamin Rossman,et al.  Homomorphism preservation theorems , 2008, JACM.

[31]  Dirk Pattinson,et al.  Rank-1 Modal Logics are Coalgebraic , 2007, J. Log. Comput..

[32]  Stéphane Demri,et al.  Presburger Modal Logic Is PSPACE-Complete , 2006, IJCAR.

[33]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1999 .

[34]  Alexander Kurz,et al.  Algebra and Coalgebra in Computer Science, Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009. Proceedings , 2009, CALCO.

[35]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[36]  Kit Fine,et al.  In so many possible worlds , 1972, Notre Dame J. Formal Log..

[37]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.