Contributions of spatial point process modelling to biodiversity theory

Les dernieres decennies ont connu une chute de la biodiversite sans precedent, qui souleve des inquietudes quant a ses consequences pour le fonctionnement des ecosystemes. Les recherches en ecologie des communautes cherchent a etablir les mecanismes permetttant la coexistence d'un grand nombre d'especes et le maintien de la biodiversite. Les processus mis en jeu au sein des communautes vegetales sont principalement des interactions locales et prennent place dans un contexte spatial. Ils doivent donc etre modelises a l'echelle des individus. Plusieurs theories ont ete proposees pour la coexistence des plantes, parmi lesquelles la theorie de la niche ecologique et la theorie neutraliste sont predominantes. Ces theories different principalement par le degre auquel les differences fonctionnelles entre especes sont jugees necessaires pour limiter l'exclusion competitive. Il en resulte des predictions differentes concernant les interactions entre especes et entre les plantes et l'environnement. De grands jeux de donnees spatialisees sont a present disponibles sur des communautes vegetales, comportant la localisation de chaque plante. Cet article discute comment les predictions des differentes theories peuvent etre evaluees a l'aide de modeles de processus pontuels et comment l'approche peut etre appliquee a ces jeux de donnees pour contribuer a la discussion.

[1]  S. Wright,et al.  Beta-Diversity in Tropical Forests , 2002, Science.

[2]  P. Reich,et al.  Diversity and Productivity in a Long-Term Grassland Experiment , 2001, Science.

[3]  J. Illian Spatial point process modelling of a biodiverse plant community , 2006 .

[4]  B. Hambly Fractals, random shapes, and point fields , 1994 .

[5]  D. Stoyan,et al.  Recent applications of point process methods in forestry statistics , 2000 .

[6]  Scott A. Sisson,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2005 .

[7]  R. Adler The Geometry of Random Fields , 2009 .

[8]  Pereira,et al.  Plant diversity and productivity experiments in european grasslands , 1999, Science.

[9]  Jesper Møller,et al.  Hierarchical spatial point process analysis for a plant community with high biodiversity , 2009, Environmental and Ecological Statistics.

[10]  Jorge Mateu,et al.  The spatial pattern of a forest ecosystem , 1998 .

[11]  K. Strøm The Ecological Niche , 1946, Nature.

[12]  A. Ives,et al.  Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference , 2004 .

[13]  S. Pacala,et al.  Ecological drift in niche-structured communities: neutral pattern does not imply neutral process , 2005 .

[14]  Jürgen Symanzik,et al.  Statistical Analysis of Spatial Point Patterns , 2005, Technometrics.

[15]  Martin Schlather,et al.  On the second-order characteristics of marked point processes , 2001 .

[16]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[17]  J. P. Grime,et al.  Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges , 2001, Science.

[18]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[19]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[20]  Michel Loreau,et al.  Biodiversity and ecosystem functioning: recent theoretical advances , 2000 .

[21]  Jesper Møller,et al.  An Introduction to Simulation-Based Inference for Spatial Point Processes , 2003 .

[22]  Stephen P. Hubbell,et al.  Tree Dispersion, Abundance, and Diversity in a Tropical Dry Forest , 1979, Science.

[23]  Drew W. Purves,et al.  Uniting pattern and process in plant ecology , 2001 .

[24]  Jacob Weiner,et al.  A neighborhood view of interactions among individual plants , 2000 .

[25]  M. Loreau,et al.  Plant species richness and community productivity: why the mechanism that promotes coexistence matters , 2002 .

[26]  John L. Harper,et al.  The Growth, Distribution and Neighbour Relationships of Trifolium Repens in a Permanent Pasture: I. Ordination, Pattern and Contact , 1979 .

[27]  Jorge Mateu,et al.  Spatial point process modelling and its applications , 2004 .

[28]  M. Crawley The Structure of Plant Communities , 2009 .

[29]  C. Mazancourt Consequences of Community Drift , 2001 .

[30]  Mark Rees,et al.  Identifying aggregation and association in fully mapped spatial data , 1999 .

[31]  O P Judson,et al.  The rise of the individual-based model in ecology. , 1994, Trends in ecology & evolution.

[32]  A. Baddeley,et al.  Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns , 2000 .

[33]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.

[34]  P. Chesson Mechanisms of Maintenance of Species Diversity , 2000 .

[35]  J. Grinnell The Niche-Relationships of the California Thrasher , 1917 .

[36]  Jorge Mateu,et al.  Case Studies in Spatial Point Process Modeling , 2006 .

[37]  R. Durrett,et al.  Spatial aspects of interspecific competition. , 1998, Theoretical population biology.

[38]  R. Law,et al.  Heteromyopia and the spatial coexistence of similar competitors , 2002 .

[39]  Jérôme Chave,et al.  Neutral theory and community ecology , 2004 .

[40]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[41]  John L. Harper,et al.  THE GROWTH, DISTRIBUTION AND NEIGHBOUR RELATIONSHIPS OF TRIFOLIUM REPENS IN A PERMANENT PASTURE , 1989 .

[42]  G. Bell Neutral macroecology. , 2001, Science.

[43]  B. Ripley The Second-Order Analysis of Stationary Point Processes , 1976 .

[44]  D. DeAngelis,et al.  New Computer Models Unify Ecological TheoryComputer simulations show that many ecological patterns can be explained by interactions among individual organisms , 1988 .

[45]  Ulf Dieckmann,et al.  The Geometry of Ecological Interactions: Simplifying Spatial Complexity , 2000 .

[46]  S. Hubbell,et al.  The unified neutral theory of biodiversity and biogeography at age ten. , 2011, Trends in ecology & evolution.

[47]  Stephen P. Hubbell,et al.  Habitat associations of trees and shrubs in a 50‐ha neotropical forest plot , 2001 .

[48]  P. Brown,et al.  Second‐Order Analysis of Inhomogeneous Spatial Point Processes Using Case–Control Data , 2007, Biometrics.

[49]  H. Regan,et al.  The Currency and Tempo of Extinction , 2001, The American Naturalist.

[50]  D. Janzen Herbivores and the Number of Tree Species in Tropical Forests , 1970, The American Naturalist.

[51]  Charles C. Elton Animal Ecology , 1927, Nature.

[52]  Stephen P. Hubbell,et al.  Beta-Diversity in Tropical Forest Trees , 2002, Science.

[53]  S. Hubbell,et al.  Spatial patterns in the distribution of tropical tree species. , 2000, Science.

[54]  D. Tilman Competition and Biodiversity in Spatially Structured Habitats , 1994 .

[55]  van Marie-Colette Lieshout,et al.  Markov Point Processes and Their Applications , 2000 .

[56]  J. Connell On the role of the natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees , 1971 .

[57]  D. Tilman,et al.  Productivity and sustainability influenced by biodiversity in grassland ecosystems , 1996, Nature.

[58]  P. Grubb THE MAINTENANCE OF SPECIES‐RICHNESS IN PLANT COMMUNITIES: THE IMPORTANCE OF THE REGENERATION NICHE , 1977 .

[59]  U. Dieckmann,et al.  POPULATION GROWTH IN SPACE AND TIME: SPATIAL LOGISTIC EQUATIONS , 2003 .

[60]  G. E. Hutchinson,et al.  Homage to Santa Rosalia or Why Are There So Many Kinds of Animals? , 1959, The American Naturalist.