A universal characterization of the closed Euclidean interval

We propose a notion of interval object in a category with finite products, providing a universal property for closed and bounded real line segments. The universal property gives rise to an analogue of primitive recursion for defining computable functions on the interval. We use this to define basic arithmetic operations and to verify equations between them. We test the notion in categories of interest. In the category of sets, any closed and bounded interval of real numbers is an interval object. In the category of topological spaces, the interval objects are closed and bounded intervals with the Euclidean topology. We also prove that an interval object exists in and elementary topos with natural numbers object.

[1]  Alex Simpson Elementary Axioms for Categories of Classes (Extended Abstract) , 1999, LICS 1999.

[2]  Kermit Sigmon Cancellative medial means are arithmetic , 1970 .

[3]  Martin Hofmann,et al.  Extensional Constructs in Intensional Type Theory , 1997, CPHC/BCS Distinguished Dissertations.

[4]  Peter T. Johnstone,et al.  On a Topological Topos , 1979 .

[5]  Martín Hötzel Escardó,et al.  PCF Extended with Real Numbers , 1996, Theor. Comput. Sci..

[6]  Thomas Streicher,et al.  Induction and Recursion on the Partial Real Line with Applications to Real PCF , 1999, Theor. Comput. Sci..

[7]  Alex K. Simpson Elementary axioms for categories of classes , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[8]  J. Aczél On mean values , 1948 .

[9]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[10]  Robert Roth Stoll,et al.  Set theory and logic , 1963 .

[11]  Hans-Juergen Boehm,et al.  Constructive real interpretation of numerical programs , 1987, SIGPLAN '87.

[12]  F W Lawvere,et al.  AN ELEMENTARY THEORY OF THE CATEGORY OF SETS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[13]  L. Fuchs,et al.  On mean systems , 1950 .

[14]  W. Rudin Principles of mathematical analysis , 1964 .

[15]  F. Ramsey The foundations of mathematics , 1932 .

[16]  G. M. Kelly,et al.  On topological quotient maps preserved by pullbacks or products , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  Hans-Juergen Boehm,et al.  Exact real arithmetic: a case study in higher order programming , 1986, LFP '86.

[18]  Claire Jones,et al.  Probabilistic non-determinism , 1990 .

[19]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .

[20]  George Finlay Simmons,et al.  Introduction to Topology and Modern Analysis , 1963 .

[21]  Adam Eppendahl Coalgebra-to-Algebra Morphisms , 1999, CTCS.

[22]  E. Wiedmer,et al.  Computing with Infinite Objects , 1980, Theor. Comput. Sci..

[23]  Richard S. Bird,et al.  Introduction to functional programming using haskeu , 1998 .

[24]  Paul Taylor,et al.  Practical Foundations of Mathematics , 1999, Cambridge studies in advanced mathematics.

[25]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[26]  Robert Cartwright,et al.  Exact real arithmetic formulating real numbers as functions , 1990 .

[27]  Roy L. Crole,et al.  Categories for Types , 1994, Cambridge mathematical textbooks.

[28]  Andrej Bauer,et al.  The realizability approach to computable analysis and topology , 2000 .

[29]  Kermit Sigmon Medial topological groupoids , 1968 .

[30]  Vasco Brattka,et al.  Recursive Characterization of Computable Real-Valued Functions and Relations , 1996, Theor. Comput. Sci..

[31]  Richard S. Bird,et al.  Algebra of programming , 1997, Prentice Hall International series in computer science.

[32]  Dusko Pavlovic,et al.  On coalgebra of real numbers , 1999, CMCS.

[33]  Erik Palmgren,et al.  Wellfounded trees in categories , 2000, Ann. Pure Appl. Log..

[34]  Lars Birkedal,et al.  Local realizability toposes and a modal logic for computability , 2002, Mathematical Structures in Computer Science.

[35]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[36]  Jean Vuillemin,et al.  Exact real computer arithmetic with continued fractions , 1988, IEEE Trans. Computers.

[37]  Reinhold Heckmann,et al.  Probabilistic Domains , 1994, CAAP.

[38]  Denis Higgs,et al.  A universal characterization of [0,∞] , 1978 .

[39]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[40]  P. McMullen Convex Sets and Their Applications , 1982 .