In vitro uptake evaluation in Caco-2 cells and in vivo results in diabetic rats of insulin-loaded PLGA nanoparticles.

[1]  T. Kissel,et al.  Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[2]  N. Jeandidier,et al.  Duodenum-specific drug delivery: in vivo assessment of a pharmaceutically developed enteric-coated capsule for a broad applicability in rat studies. , 2012, International journal of pharmaceutics.

[3]  Anders Axelsson,et al.  The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems--a review. , 2011, International journal of pharmaceutics.

[4]  Gaurav Sahay,et al.  Endocytosis of nanomedicines. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[5]  R. Gurny,et al.  Interaction of biodegradable nanoparticles with intestinal cells: the effect of surface hydrophilicity. , 2010, International journal of pharmaceutics.

[6]  Li Shi,et al.  Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers , 2010, Expert opinion on drug delivery.

[7]  Jeanette S. Andrews,et al.  Glycemic control in youth with diabetes: the SEARCH for diabetes in Youth Study. , 2009, The Journal of pediatrics.

[8]  E. Arbit,et al.  Oral Insulin: The Rationale for This Approach and Current Developments , 2009, Journal of diabetes science and technology.

[9]  W. Saltzman,et al.  The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. , 2009, Biomaterials.

[10]  Peter H Lin,et al.  Current advances in research and clinical applications of PLGA-based nanotechnology , 2009, Expert review of molecular diagnostics.

[11]  J. Emami,et al.  A novel approach to prepare insulin-loaded poly(lactic-co-glycolic acid) microcapsules and the protein stability study. , 2009, Journal of pharmaceutical sciences.

[12]  Christine Vauthier,et al.  Methods for the Preparation and Manufacture of Polymeric Nanoparticles , 2009, Pharmaceutical Research.

[13]  G. Golomb,et al.  A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[14]  Yuquan Wei,et al.  Preparation of alginate coated chitosan microparticles for vaccine delivery , 2008, BMC biotechnology.

[15]  Y. Krishnamachari,et al.  Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. , 2007, International journal of pharmaceutics.

[16]  B. Sarmento,et al.  Alginate/Chitosan Nanoparticles are Effective for Oral Insulin Delivery , 2007, Pharmaceutical Research.

[17]  R. Bodmeier,et al.  In vitro and in vivo evaluation of carbamazepine-loaded enteric microparticles. , 2007, International journal of pharmaceutics.

[18]  Dongmei Cun,et al.  Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. , 2007, Journal of pharmaceutical sciences.

[19]  J. Benoit,et al.  A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats , 2006, Molecular Cancer Therapeutics.

[20]  S. Sajeesh,et al.  Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[21]  D. K. Majumdar,et al.  Eudragit S100 entrapped insulin microspheres for oral delivery , 2005, AAPS PharmSciTech.

[22]  Johnny Yang,et al.  The Characteristics and Mechanisms of Uptake of PLGA Nanoparticles in Rabbit Conjunctival Epithelial Cell Layers , 2004, Pharmaceutical Research.

[23]  Thomas Kissel,et al.  Do cell culture conditions influence the carrier-mediated transport of peptides in Caco-2 cell monolayers? , 2003, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[24]  S. Schwendeman,et al.  Characterization of the initial burst release of a model peptide from poly(D,L-lactide-co-glycolide) microspheres. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[25]  Jayanth Panyam,et al.  Rapid endo‐lysosomal escape of poly(DL‐lactide‐coglycolide) nanoparticles: implications for drug and gene delivery , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[26]  P. Caliceti,et al.  Design and In Vivo Evaluation of An Oral Delivery System for Insulin , 2000, Pharmaceutical Research.

[27]  B. Deurs,et al.  Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. , 1999, Molecular biology of the cell.

[28]  J. Irache,et al.  Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. , 1998, Advanced drug delivery reviews.

[29]  P. Hougaard,et al.  Insulin management and metabolic control of Type 1 diabetes mellitus in childhood and adolescence in 18 countries , 1998, Diabetic medicine : a journal of the British Diabetic Association.

[30]  David J Brayden,et al.  Binding and uptake of biodegradable poly-DL-lactide micro- and nanoparticles in intestinal epithelia. , 1998, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[31]  C Vigneron,et al.  Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[32]  P Couvreur,et al.  Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin. , 1997, Journal of pharmaceutical sciences.

[33]  Gordon L. Amidon,et al.  The Mechanism of Uptake of Biodegradable Microparticles in Caco-2 Cells Is Size Dependent , 1997, Pharmaceutical Research.

[34]  A. Fasano,et al.  Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. , 1997, The Journal of clinical investigation.

[35]  R. G. Anderson,et al.  Protein kinase C activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae , 1994, The Journal of cell biology.

[36]  M. Lisanti,et al.  Caveolin forms a hetero-oligomeric protein complex that interacts with an apical GPI-linked protein: implications for the biogenesis of caveolae , 1993, The Journal of cell biology.

[37]  H. Yuasa,et al.  Influence of Anesthetic Regimens on Intestinal Absorption in Rats , 1993, Pharmaceutical Research.

[38]  Richard G. W. Anderson,et al.  Caveolin, a protein component of caveolae membrane coats , 1992, Cell.

[39]  Joseph L. Goldstein,et al.  Coated pits, coated vesicles, and receptor-mediated endocytosis , 1979, Nature.

[40]  D. Williams,et al.  Enzyme-accelerated hydrolysis of polyglycolic acid. , 1977, Journal of bioengineering.

[41]  D. Bazile,et al.  Degradation of poly(D,L-lactic acid) nanoparticles coated with albumin in model digestive fluids (USP XXII). , 1996, Biomaterials.