The pathophysiology of letter-by-letter reading

Pure alexia is a frequent and incapacitating consequence of left occipitotemporal lesions. It is thought to result from the disruption or the disconnection of the visual word form area (VWFA), a region reproducibly located within the left occipito-temporal sulcus, and encoding the abstract identity of strings of visual letters. Alexic patients often retain effective single letter recognition abilities, and develop an effortful letter-by-letter reading strategy which is the basis of most rehabilitation techniques. We study a patient who developed letter-by-letter reading following the surgical removal of left occipito-temporal regions. Using anatomical and functional MRI in the patient and in normal controls, we show that alexia resulted from the deafferentation of left fusiform cortex, and we analyze the network of brain regions subtending letter-by-letter reading. We propose that during letter-by-letter reading (1) letters are identified in the intact right-hemispheric visual system, with a central role for the region symetrical to the VWFA; (2) letters are serially transferred to the left hemisphere through the intact segment of the corpus callosum; (3) word identity is eventually recovered in the left hemisphere through verbal working memory processes involving inferior frontal and supramarginal cortex.

[1]  James R. Booth,et al.  Functional Anatomy of Intra- and Cross-Modal Lexical Tasks , 2002, NeuroImage.

[2]  S Clarke,et al.  Direct interhemispheric visual input to human speech areas , 1997, Human brain mapping.

[3]  J D Holtzman,et al.  Cognitive interaction after staged callosal section: evidence for transfer of semantic activation. , 1981, Science.

[4]  N. Kanwisher,et al.  Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions , 2000, Journal of Cognitive Neuroscience.

[5]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[6]  K. Baynes,et al.  The visual lexicon: Its access and organization in commissurotomy patients. , 1998 .

[7]  T. Allison,et al.  Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. , 1994, Cerebral cortex.

[8]  Arno Villringer,et al.  A Physiological Correlate of the “Zoom Lens” of Visual Attention , 2003, The Journal of Neuroscience.

[9]  T. Allison,et al.  Differential Sensitivity of Human Visual Cortex to Faces, Letterstrings, and Textures: A Functional Magnetic Resonance Imaging Study , 1996, The Journal of Neuroscience.

[10]  T. Nazir,et al.  Developing normal reading skills: aspects of the visual processes underlying word recognition. , 2000, Journal of experimental child psychology.

[11]  D. Bub,et al.  Visual Word Activation in Pure Alexia , 1995, Brain and Language.

[12]  Antonio R. Damasio,et al.  Pure alexia , 1983, Trends in Neurosciences.

[13]  Jeffrey S. Bowers,et al.  Fast and Specific Access to Orthographic Knowledge in a Case of Letter-by-letter Surface Alexia , 1996 .

[14]  D. Le Bihan,et al.  Visualizing the Neural Bases of a Disconnection Syndrome with Diffusion Tensor Imaging , 2002, Journal of Cognitive Neuroscience.

[15]  J. Dejerine Anatomie des centres nerveux , 1895 .

[16]  D. Bub,et al.  The Neural Substrate for Concrete, Abstract, and Emotional Word Lexica A Positron Emission Tomography Study , 1997, Journal of Cognitive Neuroscience.

[17]  S. Dehaene,et al.  The visual word form area: a prelexical representation of visual words in the fusiform gyrus , 2002, Neuroreport.

[18]  Alfonso Caramazza,et al.  VARIETIES OF PURE ALEXIA: THE CASE OF FAILURE TO ACCESS GRAPHEMIC REPRESENTATIONS. , 1998, Cognitive neuropsychology.

[19]  S. Blumstein,et al.  The Role of Segmentation in Phonological Processing: An fMRI Investigation , 2000, Journal of Cognitive Neuroscience.

[20]  D. Schacter,et al.  Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex , 2001, Neuropsychologia.

[21]  M. Gazzaniga Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? , 2000, Brain : a journal of neurology.

[22]  J B Poline,et al.  Cerebral mechanisms of word masking and unconscious repetition priming , 2001, Nature Neuroscience.

[23]  J. Dejerine,et al.  Contribution a l'etude anatomo-pathologique et clinique des differentes varietes de cecite verbale , 2000 .

[24]  Chris Rorden,et al.  Spatial Normalization of Brain Images with Focal Lesions Using Cost Function Masking , 2001, NeuroImage.

[25]  R. Rafal,et al.  Neural fate of seen and unseen faces in visuospatial neglect: A combined event-related functional MRI and event-related potential study , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  B. Weekes Differential Effects of Number of Letters on Word and Nonword Naming Latency , 1997 .

[27]  J B Poline,et al.  Letter Binding and Invariant Recognition of Masked Words , 2004, Psychological science.

[28]  Derek K. Jones,et al.  Occipito-temporal connections in the human brain. , 2003, Brain : a journal of neurology.

[29]  Leslie G. Ungerleider,et al.  Neuroimaging Studies of Attention: From Modulation of Sensory Processing to Top-Down Control , 2003, The Journal of Neuroscience.

[30]  K. Heilman,et al.  Spelling dyslexia: A form of cross-cuing , 1982, Brain and Language.

[31]  D. Yves von Cramon,et al.  The functional neuroanatomy of human working memory revisited Evidence from 3-T fMRI studies using classical domain-specific interference tasks , 2003, NeuroImage.

[32]  S. Petersen,et al.  Effects of Lexicality, Frequency, and Spelling-to-Sound Consistency on the Functional Anatomy of Reading , 1999, Neuron.

[33]  S. Dehaene,et al.  Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. , 2002, Brain : a journal of neurology.

[34]  Thad A Polk,et al.  Functional MRI evidence for an abstract, not perceptual, word-form area. , 2002, Journal of experimental psychology. General.

[35]  Stanislas Dehaene,et al.  Cerebral networks for number processing: Evidence from a case of posterior callosal lesion , 1996 .

[36]  U. Frith,et al.  Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke's Wortschatz? , 1999, Brain : a journal of neurology.

[37]  J. Binder,et al.  The topography of callosal reading pathways. A case-control analysis. , 1992, Brain : a journal of neurology.

[38]  F. Vargha-Khadem,et al.  Reading with one hemisphere. , 1989, Brain : a journal of neurology.

[39]  J. Fletcher,et al.  Brain mechanisms for reading words and pseudowords: an integrated approach. , 2002, Cerebral cortex.

[40]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[41]  J. L. Nespoulous,et al.  Optic Aphasia with Pure Alexia: A Mild Form of Visual Associative Agnosia? A Case Study , 1998, Cortex.

[42]  Martha J. Farah Pure alexia as a visual impairment: A reconsideration , 1995 .

[43]  R. Frackowiak,et al.  Demonstrating the implicit processing of visually presented words and pseudowords. , 1996, Cerebral cortex.

[44]  A Yamadori,et al.  Dissociation of letter and picture naming resulting from callosal disconnection , 1998, Neurology.

[45]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[46]  H. Coslett,et al.  Reading with the Right-Hemisphere: Evidence from Transcranial Magnetic Stimulation , 1994, Brain and Language.

[47]  P. Bartolomeo,et al.  Visually- and motor-based knowledge of letters: evidence from a pure alexic patient , 2002, Neuropsychologia.

[48]  Régine Kolinsky,et al.  Perception and awareness in phonological processing: the case of the phoneme , 1994, Cognition.

[49]  D. Beversdorf,et al.  Pure alexia: clinical-pathologic evidence for a lateralized visual language association cortex , 2000 .

[50]  K. Uutela,et al.  Impaired visual word processing in dyslexia revealed with magnetoencephalography , 1996, Annals of neurology.

[51]  P. Bartolomeo,et al.  Disruption of residual reading capacity in a pure alexic patient after a mirror-image right-hemispheric lesion , 1998, Neurology.

[52]  M. Behrmann,et al.  The evolution of pure alexia: A longitudinal study of recovery , 1990, Brain and Language.

[53]  Joel R. Meyer,et al.  Relation between brain activation and lexical performance , 2003, Human brain mapping.

[54]  A. Damasio,et al.  The anatomic basis of pure alexia , 1983, Neurology.

[55]  D. Somers,et al.  Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[56]  A. Dale,et al.  Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. , 1998, Science.

[57]  M. Tarr,et al.  The Fusiform Face Area is Part of a Network that Processes Faces at the Individual Level , 2000, Journal of Cognitive Neuroscience.

[58]  H B Coslett,et al.  Reading in pure alexia. The effect of strategy. , 1993, Brain : a journal of neurology.

[59]  B. Postle,et al.  Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies , 2000, Experimental Brain Research.

[60]  L. G. Gonzalez Rothi,et al.  Lexical access via letter naming in a profoundly alexic and anomic patient: a treatment study. , 2000, Journal of the International Neuropsychological Society : JINS.

[61]  Rafael Malach,et al.  Large-Scale Mirror-Symmetry Organization of Human Occipito-Temporal Object Areas , 2003, Neuron.

[62]  R. Salmelin,et al.  Dynamics of letter string perception in the human occipitotemporal cortex. , 1999, Brain : a journal of neurology.

[63]  T. Allison,et al.  Word recognition in the human inferior temporal lobe , 1994, Nature.

[64]  M Lavidor,et al.  Evaluating a split processing model of visual word recognition: effects of word length. , 2001, Brain research. Cognitive brain research.

[65]  B. Postle,et al.  Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  H. Branch Coslett,et al.  Reading in pure alexiaThe effect of strategy , 1993 .

[67]  S Lehéricy,et al.  The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. , 2000, Brain : a journal of neurology.

[68]  Martin Arguin,et al.  EXTENT AND LIMITS OF COVERT LEXICAL ACTIVATION IN LETTER-BY-LETTER READING. , 1998, Cognitive neuropsychology.

[69]  Bruce D. McCandliss,et al.  The visual word form area: expertise for reading in the fusiform gyrus , 2003, Trends in Cognitive Sciences.

[70]  H. Coslett,et al.  Evidence for preserved reading in 'pure alexia'. , 1989, Brain : a journal of neurology.

[71]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[72]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[73]  D. Plaut,et al.  A LITERATURE REVIEW AND NEW DATA SUPPORTING AN INTERACTIVE ACCOUNT OF LETTER-BY-LETTER READING. , 1998, Cognitive neuropsychology.

[74]  L. Cohen Number processing in pure alexia: The effect of hemispheric asymmetries and task demands , 1995 .

[75]  R. Cabeza,et al.  Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies , 2000, Journal of Cognitive Neuroscience.

[76]  S. Dehaene,et al.  Visual word recognition in the left and right hemispheres: anatomical and functional correlates of peripheral alexias. , 2003, Cerebral cortex.