Wavelength conversion in Er(3+) doped chalcogenide fibers for optical gas sensors.

We report for the first time the conversion of incoherent infrared light around 4.4µm into a near-infrared signal at 810nm in erbium-doped GaGeSbS fibers and bulk glass samples. This energy conversion is made possible by pumping erbium doped chalcogenide samples at 982 nm and simultaneously exciting them with a 4.4µm infrared signal. This result paves the way for the development of an "all-optical" gas sensor able to detect various gas traces using a remote detection based on commercial silica fibers.

[1]  G. F. Sá,et al.  "1.5μm to 0.65 m Up-Conversion by "Summation of Photons by Energy Transfer" Effect in Diode Pumped Vitroceramics". , 1984, International Conference on Luminescence - 1984.

[2]  M. T. D. Araujo,et al.  Thermal effect on upconversion fluorescence emission in Er3+-doped chalcogenide glasses under anti-Stokes, Stokes and resonant excitation , 2003 .

[3]  Y. Messaddeq,et al.  Upconversion luminescence in Er3+ doped Ga10Ge25S65 glass and glass-ceramic excited in the near-infrared , 2013 .

[4]  N. Bloembergen,et al.  Solid State Infrared Quantum Counters , 1959 .

[5]  Virginie Nazabal,et al.  Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers , 2015 .

[6]  S. Stokowski Characteristics of a laser‐pumped 1.5‐μm infrared quantum counter , 1974 .

[7]  W. J. Chung,et al.  DY3+ DOPED GE-GA-SB-SE GLASSES AND OPTICAL FIBERS FOR THE MID-IR GAIN MEDIA , 2008 .

[8]  Lloyd L. Chase,et al.  Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/ , 1992 .

[9]  Virginie Nazabal,et al.  Infrared optical sensor for CO2 detection , 2009, Optics + Optoelectronics.

[10]  Jens Kobelke,et al.  Effects of carbon, hydrocarbon and hydroxide impurities on praseodymium doped arsenic sulfide based glasses , 2001 .

[11]  A. D. Guzman-Chavez,et al.  Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm , 2009 .

[12]  T. King,et al.  Spectroscopic and energy-transfer parameters for Er 3+ -doped and Er 3+ , Pr 3+ -codoped GeGaS glasses , 2002 .

[13]  Virginie Nazabal,et al.  Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy , 2008 .

[14]  Shibin Jiang,et al.  Rate equation analysis and energy transfer of Er3+-doped Ga2S3–GeS2–La2S3 glasses , 2003 .

[15]  W. Shand,et al.  INFRARED QUANTUM COUNTER ACTION IN Er-DOPED FLUORIDE LATTICES , 1963 .

[16]  David N. Payne,et al.  Rare-earth doped chalcogenide glass fibre laser , 1997 .

[17]  Virginie Nazabal,et al.  Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)(65) bulk glasses and fibers , 2013 .

[18]  Leslie Brandon Shaw,et al.  Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber , 2001 .