Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor

[1]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[2]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[3]  Jung Min Lee,et al.  Synaptic Barristor Based on Phase‐Engineered 2D Heterostructures , 2018, Advanced materials.

[4]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[5]  Eric Pop,et al.  Electronic synapses made of layered two-dimensional materials , 2018, Nature Electronics.

[6]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[7]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[8]  Weihua Tang,et al.  Abnormal bipolar resistive switching behavior in a Pt/GaO1.3/Pt structure , 2015 .

[9]  J. Yang,et al.  Robust memristors based on layered two-dimensional materials , 2018, 1801.00530.

[10]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[11]  S. Block,et al.  Morphology, mechanical stability, and protective properties of ultrathin gallium oxide coatings. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[12]  Kourosh Kalantar-Zadeh,et al.  Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals , 2017, Nature Communications.

[13]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.

[14]  M. Hersam,et al.  Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide , 2018, Nature.

[15]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[16]  Yidong Xia,et al.  Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films , 2010 .

[17]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[18]  Giacomo Indiveri,et al.  A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity , 2006, IEEE Transactions on Neural Networks.

[19]  Benjamin J. Carey,et al.  Printing two-dimensional gallium phosphate out of liquid metal , 2018, Nature Communications.

[20]  Takashi Taniguchi,et al.  Layer-by-layer dielectric breakdown of hexagonal boron nitride. , 2015, ACS nano.

[21]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[22]  Omid Kavehei,et al.  A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides , 2017, Science.

[23]  Weihua Tang,et al.  Unipolar resistive switching behavior of amorphous gallium oxide thin films for nonvolatile memory applications , 2015 .

[24]  Wei Lu,et al.  Short-term Memory to Long-term Memory Transition in a Nanoscale Memristor , 2022 .

[25]  Yuchao Yang,et al.  Probing memristive switching in nanoionic devices , 2018 .

[26]  Dong-Weon Lee,et al.  Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. , 2013, ACS applied materials & interfaces.

[27]  M. J. Regan,et al.  X-ray study of the oxidation of liquid-gallium surfaces , 1997 .

[28]  Young Sun,et al.  A Synaptic Transistor based on Quasi‐2D Molybdenum Oxide , 2017, Advanced materials.

[29]  L. Chua Memristor-The missing circuit element , 1971 .

[30]  Manfred Martin,et al.  Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour , 2014, Nature Communications.

[31]  B. Yegnanarayana,et al.  Artificial Neural Networks , 2004 .

[32]  L. Chou,et al.  Bipolar resistive switching of single gold-in-Ga2O3 nanowire. , 2012, Nano letters.

[33]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[34]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[35]  Jing Guo,et al.  Atomically Thin Femtojoule Memristive Device , 2017, Advanced materials.