Polymeric Nanomedicines Based on Poly(lactide) and Poly(lactide-co-glycolide).

[1]  Jianjun Cheng,et al.  Drug-Initiated, Controlled Ring-Opening Polymerization for the Synthesis of Polymer-Drug Conjugates. , 2012, Macromolecules.

[2]  R. Jain,et al.  Delivering nanomedicine to solid tumors , 2010, Nature Reviews Clinical Oncology.

[3]  Jianjun Cheng,et al.  Controlled synthesis of camptothecin-polylactide conjugates and nanoconjugates. , 2010, Bioconjugate chemistry.

[4]  Samir Mitragotri,et al.  Red blood cell-mimicking synthetic biomaterial particles , 2009, Proceedings of the National Academy of Sciences.

[5]  Riyi Shi,et al.  Effective Repair of Traumatically Injured Spinal Cord by Nanoscale Block Copolymer Micelles , 2009, Nature nanotechnology.

[6]  M. Dewhirst,et al.  A dual-emissive-materials design concept enables tumour hypoxia imaging. , 2009, Nature materials.

[7]  Yi Lu,et al.  Reversible cell-specific drug delivery with aptamer-functionalized liposomes. , 2009, Angewandte Chemie.

[8]  Chee Wee Gan,et al.  Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. , 2009, Biomaterials.

[9]  W. Mark Saltzman,et al.  Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA , 2009, Nature materials.

[10]  Jianjun Cheng,et al.  Ring-opening polymerization-mediated controlled formulation of polylactide-drug nanoparticles. , 2009, Journal of the American Chemical Society.

[11]  Robert Langer,et al.  Impact of nanotechnology on drug delivery. , 2009, ACS nano.

[12]  Pamela Basto,et al.  HER‐2‐Targeted Nanoparticle–Affibody Bioconjugates for Cancer Therapy , 2008, ChemMedChem.

[13]  J. S. Suk,et al.  Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that "slip" through the human mucus barrier. , 2008, Angewandte Chemie.

[14]  Zhilian Zhou,et al.  The pursuit of a scalable nanofabrication platform for use in material and life science applications. , 2008, Accounts of chemical research.

[15]  Stephanie E. A. Gratton,et al.  The effect of particle design on cellular internalization pathways , 2008, Proceedings of the National Academy of Sciences.

[16]  Lin Yu,et al.  Injectable hydrogels as unique biomedical materials. , 2008, Chemical Society reviews.

[17]  R. D'Amato,et al.  An orally delivered small-molecule formulation with antiangiogenic and anticancer activity , 2008, Nature Biotechnology.

[18]  Jianjun Cheng,et al.  Paclitaxel-initiated, controlled polymerization of lactide for the formulation of polymeric nanoparticulate delivery vehicles. , 2008, Angewandte Chemie.

[19]  L. Bromberg Polymeric micelles in oral chemotherapy. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[20]  Guoqing Zhang,et al.  Boron polylactide nanoparticles exhibiting fluorescence and phosphorescence in aqueous medium. , 2008, ACS nano.

[21]  Chee Wee Gan,et al.  In Vitro and In Vivo Investigation on PLA–TPGS Nanoparticles for Controlled and Sustained Small Molecule Chemotherapy , 2008, Pharmaceutical Research.

[22]  Chun Xing Li,et al.  Polymer-drug conjugates: recent development in clinical oncology. , 2008, Advanced drug delivery reviews.

[23]  Kinam Park,et al.  Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Förster resonance energy transfer imaging , 2008, Proceedings of the National Academy of Sciences.

[24]  C. Bertozzi,et al.  In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish , 2008, Science.

[25]  Kato L. Killops,et al.  Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene "click" chemistry. , 2008, Journal of the American Chemical Society.

[26]  Sung-Bae Kim,et al.  Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer , 2008, Breast Cancer Research and Treatment.

[27]  R. Kane Fabricating complex polymeric micro- and nanostructures: lithography in microfluidic devices. , 2008, Angewandte Chemie.

[28]  James R Heath,et al.  Nanotechnology and cancer. , 2008, Annual review of medicine.

[29]  Dong-Wan Kim,et al.  Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. , 2007, Annals of oncology : official journal of the European Society for Medical Oncology.

[30]  Jianjun Cheng,et al.  Anticancer Polymeric Nanomedicines , 2007 .

[31]  S. Mitragotri,et al.  Making polymeric micro- and nanoparticles of complex shapes , 2007, Proceedings of the National Academy of Sciences.

[32]  S. J. Payne,et al.  Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. , 2007, Journal of the American Chemical Society.

[33]  M. Breese,et al.  Proton beam writing , 2007 .

[34]  D. Discher,et al.  Shape effects of filaments versus spherical particles in flow and drug delivery. , 2007, Nature nanotechnology.

[35]  Norased Nasongkla,et al.  Functionalized Micellar Systems for Cancer Targeted Drug Delivery , 2007, Pharmaceutical Research.

[36]  Ian Collins,et al.  New approaches to molecular cancer therapeutics , 2006, Nature chemical biology.

[37]  B Ruozi,et al.  PLA/PLGA nanoparticles for sustained release of docetaxel. , 2006, International journal of pharmaceutics.

[38]  F. Szoka,et al.  A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas , 2006, Proceedings of the National Academy of Sciences.

[39]  F. Cailler,et al.  Improved therapeutic efficacy of doxorubicin through conjugation with a novel peptide drug delivery technology (Vectocell). , 2006, Journal of medicinal chemistry.

[40]  J. Hubbell,et al.  Doxorubicin encapsulation and diffusional release from stable, polymeric, hydrogel nanoparticles. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[41]  F. Szoka,et al.  An intramolecular cyclization reaction is responsible for the in vivo inefficacy and apparent pH insensitive hydrolysis kinetics of hydrazone carboxylate derivatives of doxorubicin. , 2006, Bioconjugate chemistry.

[42]  Ruth Duncan,et al.  Polymer conjugates as anticancer nanomedicines , 2006, Nature Reviews Cancer.

[43]  Si-Shen Feng,et al.  The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. , 2006, Biomaterials.

[44]  Xiabin Jing,et al.  Polylactide-based polyurethane and its shape-memory behavior , 2006 .

[45]  Dhananjay Dendukuri,et al.  Continuous-flow lithography for high-throughput microparticle synthesis , 2006, Nature materials.

[46]  J. Richie,et al.  Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A. Khademhosseini,et al.  Microscale technologies for tissue engineering and biology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Shiladitya Sengupta,et al.  Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system , 2005, Nature.

[49]  Joseph M DeSimone,et al.  Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. , 2005, Journal of the American Chemical Society.

[50]  Robert Langer,et al.  Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. , 2005, Biomaterials.

[51]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[52]  J. Fréchet,et al.  pH-Responsive copolymer assemblies for controlled release of doxorubicin. , 2005, Bioconjugate chemistry.

[53]  Omid C. Farokhzad,et al.  Nanoparticle-Aptamer Bioconjugates , 2004, Cancer Research.

[54]  Y. Bang,et al.  A multi-center, late phase II clinical trial of Genexol (paclitaxel) and cisplatin for patients with advanced gastric cancer. , 2004, Oncology reports.

[55]  Damon L. Meyer,et al.  Effects of Drug Loading on the Antitumor Activity of a Monoclonal Antibody Drug Conjugate , 2004, Clinical Cancer Research.

[56]  H. Ueno,et al.  Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin , 2004, British Journal of Cancer.

[57]  Odile Dechy-Cabaret,et al.  Controlled ring-opening polymerization of lactide and glycolide. , 2004, Chemical reviews.

[58]  K. Avgoustakis,et al.  Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. , 2004, Current drug delivery.

[59]  Tae-You Kim,et al.  Phase I and Pharmacokinetic Study of Genexol-PM, a Cremophor-Free, Polymeric Micelle-Formulated Paclitaxel, in Patients with Advanced Malignancies , 2004, Clinical Cancer Research.

[60]  K. Ulbrich,et al.  Polymeric anticancer drugs with pH-controlled activation. , 2004, Advanced drug delivery reviews.

[61]  Jianjun Cheng,et al.  Antitumor Activity of β-Cyclodextrin Polymer−Camptothecin Conjugates , 2004 .

[62]  J. Lewis,et al.  Microperiodic structures: Direct writing of three-dimensional webs , 2004, Nature.

[63]  J. Itskovitz‐Eldor,et al.  Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[64]  David R. Moore,et al.  Mechanism of the alternating copolymerization of epoxides and CO2 using beta-diiminate zinc catalysts: evidence for a bimetallic epoxide enchainment. , 2003, Journal of the American Chemical Society.

[65]  Jianjun Cheng,et al.  Synthesis of linear, beta-cyclodextrin-based polymers and their camptothecin conjugates. , 2003, Bioconjugate chemistry.

[66]  J. Feijen,et al.  Controlled and stereoselective polymerization of lactide: kinetics, selectivity, and microstructures. , 2003, Journal of the American Chemical Society.

[67]  V. Labhasetwar,et al.  Biodegradable nanoparticles for drug and gene delivery to cells and tissue. , 2003, Advanced drug delivery reviews.

[68]  S. Feng,et al.  A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[69]  Yechezkel Barenholz,et al.  Relevancy of Drug Loading to Liposomal Formulation Therapeutic Efficacy , 2003, Journal of liposome research.

[70]  G. Coates,et al.  Single-Site β-Diiminate Zinc Catalysts for the Ring-Opening Polymerization of β-Butyrolactone and β-Valerolactone to Poly(3-hydroxyalkanoates) , 2002 .

[71]  David R. Moore,et al.  High-activity, single-site catalysts for the alternating copolymerization of CO2 and propylene oxide. , 2002, Journal of the American Chemical Society.

[72]  G. Coates,et al.  Electronic and steric effects on catalysts for CO2/epoxide polymerization: subtle modifications resulting in superior activities. , 2002, Angewandte Chemie.

[73]  Samuel I Stupp,et al.  Self-assembling biomaterials: Liquid crystal phases of cholesteryl oligo(l-lactic acid) and their interactions with cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Stupp,et al.  Self-Assembling Biomaterials: l-Lysine-Dendron-Substituted Cholesteryl-(l-lactic acid)n̄ , 2002 .

[75]  A. Lendlein,et al.  Shape-memory polymers. , 2002, Angewandte Chemie.

[76]  R. Langer,et al.  Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications , 2002, Science.

[77]  J. Gallucci,et al.  Coordination chemistry and reactivity of monomeric alkoxides and amides of magnesium and zinc supported by the diiminato ligand CH(CMeNC(6)H(3)-2,6-(i)Pr(2))(2). A comparative study. , 2002, Inorganic chemistry.

[78]  Shulamit Levenberg,et al.  Endothelial cells derived from human embryonic stem cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[79]  D. Clark,et al.  Nonaqueous biocatalytic synthesis of new cytotoxic doxorubicin derivatives: exploiting unexpected differences in the regioselectivity of salt-activated and solubilized subtilisin. , 2002, Journal of the American Chemical Society.

[80]  G. Coates,et al.  Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms. , 2002, Journal of the American Chemical Society.

[81]  S. Stupp,et al.  Cholesteryl-(L-lactic acid)n building blocks for self-assembling biomaterials , 2002 .

[82]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[83]  H. S. Oh,et al.  In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[84]  David R. Moore,et al.  Polymerization of lactide with zinc and magnesium beta-diiminate complexes: stereocontrol and mechanism. , 2001, Journal of the American Chemical Society.

[85]  Robert Langer,et al.  AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[86]  A. R. Kulkarni,et al.  Biodegradable polymeric nanoparticles as drug delivery devices. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[87]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[88]  A. Attygalle,et al.  Single-Site Catalysts for Ring-Opening Polymerization: Synthesis of Heterotactic Poly(lactic acid) from rac-Lactide , 1999 .

[89]  W. Hunter,et al.  Development of copolymers of poly(d,l-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel , 1999 .

[90]  K. Shakesheff,et al.  Polymeric systems for controlled drug release. , 1999, Chemical reviews.

[91]  W. Mark Saltzman,et al.  Controlled DNA Delivery Systems , 1999, Pharmaceutical Research.

[92]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[93]  J. Szostak,et al.  Isolation of a fluorophore-specific DNA aptamer with weak redox activity. , 1998, Chemistry & biology.

[94]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[95]  Scott D. Putney,et al.  Improving protein therapeutics with sustained-release formulations , 1998, Nature Biotechnology.

[96]  Anderson,et al.  Biodegradation and biocompatibility of PLA and PLGA microspheres. , 1997, Advanced drug delivery reviews.

[97]  Sung Wan Kim,et al.  Biodegradable block copolymers as injectable drug-delivery systems , 1997, Nature.

[98]  M. Rothenberg Topoisomerase I inhibitors: review and update. , 1997, Annals of oncology : official journal of the European Society for Medical Oncology.

[99]  M. Vert,et al.  More about the stereodependence ofDD andLL pair linkages during the ring-opening polymerization of racemic lactide , 1997 .

[100]  N Lotan,et al.  Large porous particles for pulmonary drug delivery. , 1997, Science.

[101]  S. Arbuck,et al.  Camptothecin and Its Analogs , 1996 .

[102]  C. Conover,et al.  Drug delivery systems. 2. Camptothecin 20-O-poly(ethylene glycol) ester transport forms. , 1996, Journal of medicinal chemistry.

[103]  T. Park,et al.  Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. , 1995, Biomaterials.

[104]  D. Mastropaolo,et al.  Crystal and molecular structure of paclitaxel (taxol). , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Suming Li,et al.  Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. , 1995, Biomaterials.

[106]  Suming Li,et al.  Biodegradation of PLA/GA polymers: increasing complexity. , 1994, Biomaterials.

[107]  R. Himes,et al.  The effect of the aromatic rings of taxol on biological activity and solution conformation: synthesis and evaluation of saturated taxol and taxotere analogues. , 1994, Journal of medicinal chemistry.

[108]  H. Kricheldorf,et al.  Polylactones: 30. Vitamins, hormones and drugs as co-initiators of AlEt3-initiated polymerizations of lactide , 1994 .

[109]  V. Torchilin,et al.  Biodegradable long-circulating polymeric nanospheres. , 1994, Science.

[110]  R. Gurny,et al.  Preparation of aqueous polymeric nanodispersions by a reversible salting-out process : influence of process parameters on particle size , 1992 .

[111]  R. Duncan,et al.  Drug-polymer conjugates: potential for improved chemotherapy. , 1992, Anti-cancer drugs.

[112]  Robert Langer,et al.  Controlled Delivery Systems for Proteins Based on Poly(Lactic/Glycolic Acid) Microspheres , 1991, Pharmaceutical Research.

[113]  T. Kaneko,et al.  New hydrazone derivatives of adriamycin and their immunoconjugates--a correlation between acid stability and cytotoxicity. , 1991, Bioconjugate chemistry.

[114]  T. Kaneko,et al.  Antitumor activity of adriamycin (hydrazone-linked) immunoconjugates compared with free adriamycin and specificity of tumor cell killing. , 1990, Cancer research.

[115]  T. Kaneko,et al.  Evaluation in vitro of adriamycin immunoconjugates synthesized using an acid-sensitive hydrazone linker. , 1990, Cancer research.

[116]  Hatem Fessi,et al.  Nanocapsule formation by interfacial polymer deposition following solvent displacement , 1989 .

[117]  R. Hertzberg,et al.  On the mechanism of topoisomerase I inhibition by camptothecin: evidence for binding to an enzyme-DNA complex. , 1989, Biochemistry.

[118]  N. F. Magri,et al.  Modified taxols. 2. Oxidation products of taxol , 1986 .

[119]  W. MacKnight Macromolecules. , 1976, Science.

[120]  R. Ramesh,et al.  Current Opinion in Solid State and Materials Science , 2012 .

[121]  C. Monneret,et al.  Doxorubicin conjugates for selective delivery to tumors. , 2008, Topics in current chemistry.

[122]  Si-Shen Feng,et al.  Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. , 2006, Biomaterials.

[123]  D. Discher,et al.  Polymersomes. , 2019, Annual review of biomedical engineering.

[124]  B. Sullenger,et al.  Aptamers: an emerging class of therapeutics. , 2005, Annual review of medicine.

[125]  Mark E. Davis,et al.  Antitumor activity of beta-cyclodextrin polymer-camptothecin conjugates. , 2004, Molecular pharmaceutics.

[126]  T. Park,et al.  Controlled Protein Release from Polyethyleneimine-Coated Poly(L-lactic Acid)/Pluronic Blend Matrices , 2004, Pharmaceutical Research.

[127]  G. Coates,et al.  Single-site beta-diiminate zinc catalysts for the ring-opening polymerization of beta-butyrolactone and beta-valerolactone to poly(3-hydroxyalkanoates). , 2002, Journal of the American Chemical Society.

[128]  G. Coates,et al.  Single-site beta-diiminate zinc catalysts for the alternating copolymerization of CO2 and epoxides: catalyst synthesis and unprecedented polymerization activity. , 2001, Journal of the American Chemical Society.

[129]  W. Mark Saltzman,et al.  Synthetic DNA delivery systems , 2000, Nature Biotechnology.

[130]  F. Kratz,et al.  Drug-polymer conjugates containing acid-cleavable bonds. , 1999, Critical reviews in therapeutic drug carrier systems.

[131]  S. Arbuck,et al.  Camptothecin and its analogs. An overview of their potential in cancer therapeutics. , 1996, Annals of the New York Academy of Sciences.

[132]  M. Chisholm,et al.  Single-site metal alkoxide catalysts for ring-opening polymerizations. Poly(dilactide) synthesis employing {HB(3-Butpz)3}Mg(OEt) , 1996 .

[133]  S. Gawlak,et al.  Optimization of immunotherapy with adriamycin(hydrazone)-immunoconjugates in human B-lymphoma xenografts , 1991 .

[134]  T. Fan,et al.  The Formulation of Aptamer-coated Paclitaxel–polylactide Nanoconjugates and Their Targeting to Cancer Cells , 2022 .