D-Map: Visual analysis of ego-centric information diffusion patterns in social media

Popular social media platforms could rapidly propagate vital information over social networks among a significant number of people. In this work we present D-Map (Diffusion Map), a novel visualization method to support exploration and analysis of social behaviors during such information diffusion and propagation on typical social media through a map metaphor. In D-Map, users who participated in reposting (i.e., resending a message initially posted by others) one central user's posts (i.e., a series of original tweets) are collected and mapped to a hexagonal grid based on their behavior similarities and in chronological order of the repostings. With additional interaction and linking, D-Map is capable of providing visual portraits of the influential users and describing their social behaviors. A comprehensive visual analysis system is developed to support interactive exploration with D-Map. We evaluate our work with real world social media data and find interesting patterns among users. Key players, important information diffusion paths, and interactions among social communities can be identified.

[1]  Ana-Maria Popescu,et al.  A Machine Learning Approach to Twitter User Classification , 2011, ICWSM.

[2]  Yale Song,et al.  #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[3]  Michael Burch,et al.  A Taxonomy and Survey of Dynamic Graph Visualization , 2017, Comput. Graph. Forum.

[4]  Xiaohua Sun,et al.  Whisper: Tracing the Spatiotemporal Process of Information Diffusion in Real Time , 2012, IEEE Transactions on Visualization and Computer Graphics.

[5]  Xin Zhang,et al.  WeiboEvents: A Crowd Sourcing Weibo Visual Analytic System , 2014, 2014 IEEE Pacific Visualization Symposium.

[6]  Fei Wang,et al.  SocialHelix: visual analysis of sentiment divergence in social media , 2015, J. Vis..

[7]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[8]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[9]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[10]  Yifan Hu,et al.  Visualizing dynamic data with maps , 2011, 2011 IEEE Pacific Visualization Symposium.

[11]  Michael S. Bernstein,et al.  Twitinfo: aggregating and visualizing microblogs for event exploration , 2011, CHI.

[12]  Fabian Beck,et al.  Visualizing the Evolution of Communities in Dynamic Graphs , 2015, Comput. Graph. Forum.

[13]  Daniel A. Keim,et al.  Visual Analysis of Social Media Data , 2013, Computer.

[14]  Yu-Ru Lin,et al.  Episogram: Visual Summarization of Egocentric Social Interactions , 2016, IEEE Computer Graphics and Applications.

[15]  Yingcai Wu,et al.  EvoRiver: Visual Analysis of Topic Coopetition on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[16]  Les Carr,et al.  Identifying communicator roles in twitter , 2012, WWW.

[17]  Michele Emmer The Visual Mind II (Leonardo Books) , 2005 .

[18]  Robert P. Biuk-Aghai,et al.  Enhanced Hexagon-Tiling Algorithm for Map-Like Information Visualisation , 2015, VINCI.

[19]  Yu-Ru Lin,et al.  UnTangle Map: Visual Analysis of Probabilistic Multi-Label Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[20]  Fangzhao Wu,et al.  OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media , 2014, IEEE Transactions on Visualization and Computer Graphics.

[21]  Daniel B. Carr,et al.  Scatterplot matrix techniques for large N , 1986 .

[22]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[23]  Cécile Favre,et al.  Information diffusion in online social networks: a survey , 2013, SGMD.

[24]  Edwin de Jonge,et al.  Tree Colors: Color Schemes for Tree-Structured Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[25]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[26]  Mark E. J. Newman,et al.  Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Bongshin Lee,et al.  GraphMaps: Browsing Large Graphs as Interactive Maps , 2015, GD.

[28]  Jean-Daniel Fekete,et al.  MatLink: Enhanced Matrix Visualization for Analyzing Social Networks , 2007, INTERACT.

[29]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[30]  Timothy W. Finin,et al.  Why we twitter: understanding microblogging usage and communities , 2007, WebKDD/SNA-KDD '07.

[31]  Ulrik Brandes,et al.  Affiliation Dynamics with an Application to Movie-Actor Biographies , 2006, EuroVis.

[32]  Angus Graeme Forbes,et al.  TimeArcs: Visualizing Fluctuations in Dynamic Networks , 2016, Comput. Graph. Forum.

[33]  Tiago P. Peixoto,et al.  The graph-tool python library , 2014 .

[34]  Daniel Fried,et al.  Maps of Computer Science , 2013, 2014 IEEE Pacific Visualization Symposium.

[35]  Kwan-Liu Ma,et al.  Breaking news on twitter , 2012, CHI.

[36]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[37]  Ching-Yung Lin,et al.  TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems , 2016, IEEE Transactions on Visualization and Computer Graphics.

[38]  Martin Wattenberg,et al.  Google+Ripples: a native visualization of information flow , 2013, WWW '13.

[39]  Jimeng Sun,et al.  Social influence analysis in large-scale networks , 2009, KDD.

[40]  Dustin Arendt,et al.  SVEN: Informative Visual Representation of Complex Dynamic Structure , 2014, ArXiv.

[41]  Ben Shneiderman,et al.  Analyzing Social Media Networks with NodeXL: Insights from a Connected World , 2010 .

[42]  Yingcai Wu,et al.  Visual Analysis of Topic Competition on Social Media , 2013, IEEE Transactions on Visualization and Computer Graphics.

[43]  Judith S. Donath,et al.  PeopleGarden: creating data portraits for users , 1999, UIST '99.

[44]  Yifan Hu,et al.  Efficient, High-Quality Force-Directed Graph Drawing , 2006 .

[45]  Weiwei Cui,et al.  How Hierarchical Topics Evolve in Large Text Corpora , 2014, IEEE Transactions on Visualization and Computer Graphics.

[46]  Yifan Hu,et al.  Interactive Visualization of Streaming Text Data with Dynamic Maps , 2013, J. Graph Algorithms Appl..

[47]  Kwan-Liu Ma,et al.  Temporal Multivariate Networks , 2013, Multivariate Network Visualization.

[48]  Jimeng Sun,et al.  FacetAtlas: Multifaceted Visualization for Rich Text Corpora , 2010, IEEE Transactions on Visualization and Computer Graphics.

[49]  Yifan Hu,et al.  GMap: Drawing Graphs as Maps , 2009, GD.

[50]  Rafael G. Cano,et al.  Mosaic Drawings and Cartograms , 2015, Comput. Graph. Forum.

[51]  Lei Shi,et al.  Flow-Based Influence Graph Visual Summarization , 2014, 2014 IEEE International Conference on Data Mining.

[52]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.