Extensors and the Hilbert scheme

The Hilbert scheme $\mathbf{Hilb}_{p(t)}^{n}$ parametrizes closed subschemes and families of closed subschemes in the projective space $\mathbb{P}^n$ with a fixed Hilbert polynomial $p(t)$. It is classically realized as a closed subscheme of a Grassmannian or a product of Grassmannians. In this paper we consider schemes over a field $k$ of characteristic zero and we present a new proof of the existence of the Hilbert scheme as a subscheme of the Grassmannian $\mathbf{Gr}_{p(r)}^{N(r)}$, where $N(r)= h^0 (\mathcal{O}_{\mathbb{P}^n}(r))$. Moreover, we exhibit explicit equations defining it in the Pl\"ucker coordinates of the Pl\"ucker embedding of $\mathbf{Gr}_{p(r)}^{N(r)}$. Our proof of existence does not need some of the classical tools used in previous proofs, as flattening stratifications and Gotzmann's Persistence Theorem. The degree of our equations is $\text{deg} p(t)+2$, lower than the degree of the equations given by Iarrobino and Kleiman in 1999 and also lower (except for the case of hypersurfaces) than the degree of those proved by Haiman and Sturmfels in 2004 after Bayer's conjecture in 1982. The novelty of our approach mainly relies on the deeper attention to the intrinsic symmetries of the Hilbert scheme and on some results about Grassmannian based on the notion of extensors.

[2]  Francesca Cioffi,et al.  Upgraded methods for the effective computation of marked schemes on a strongly stable ideal , 2011, J. Symb. Comput..

[3]  H. Flanders Tensor and exterior powers , 1967 .

[4]  Michel Kervaire,et al.  Minimal resolutions of some monomial ideals , 1990 .

[5]  Robin Hartshorne,et al.  Connectedness of the Hilbert scheme , 1966 .

[6]  Gian-Carlo Rota,et al.  On the Exterior Calculus of Invariant Theory , 1985 .

[7]  Paolo Lella,et al.  An efficient implementation of the algorithm computing the Borel-fixed points of a Hilbert scheme , 2012, ISSAC.

[8]  Paolo Lella A network of rational curves on the Hilbert scheme , 2010 .

[9]  D. Bayer The division algorithm and the hilbert scheme , 1982 .

[10]  André Weil Foundations of Algebraic Geometry , 1946 .

[11]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[12]  Paolo Lella,et al.  On the functoriality of marked families , 2013, 1307.7657.

[13]  Paolo Lella,et al.  Rational components of Hilbert schemes , 2009, 0903.1029.

[14]  Alexander Grothendieck,et al.  Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert , 1961 .

[15]  Bernd Sturmfels,et al.  Multigraded Hilbert schemes , 2002, math/0201271.

[16]  Paolo Lella,et al.  A Borel open cover of the Hilbert scheme , 2009, J. Symb. Comput..

[17]  Nitin Nitsure Construction of Hilbert and Quot Schemes , 2005 .

[18]  Francesca Cioffi,et al.  Flat families by strongly stable ideals and a generalization of Gröbner bases , 2011, J. Symb. Comput..

[19]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[20]  Bernard Mourrain,et al.  The Hilbert scheme of points and its link with border basis , 2009, ArXiv.

[21]  David Mumford,et al.  Lectures on curves on an algebraic surface , 1966 .

[22]  Mark Green,et al.  Generic Initial Ideals , 1998 .

[23]  Francesca Cioffi,et al.  Segments and Hilbert schemes of points , 2010, Discret. Math..

[24]  Michael Stillman,et al.  A theorem on refining division orders by the reverse lexicographic order , 1987 .

[25]  G. Gotzmann,et al.  Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes , 1978 .

[26]  Joe Harris,et al.  The Geometry Of Schemes , 1992 .