Large-scale EEG/MEG source localization with spatial flexibility

We propose a novel approach to solving the electro-/magnetoencephalographic (EEG/MEG) inverse problem which is based upon a decomposition of the current density into a small number of spatial basis fields. It is designed to recover multiple sources of possibly different extent and depth, while being invariant with respect to phase angles and rotations of the coordinate system. We demonstrate the method's ability to reconstruct simulated sources of random shape and show that the accuracy of the recovered sources can be increased, when interrelated field patterns are co-localized. Technically, this leads to large-scale mathematical problems, which are solved using recent advances in convex optimization. We apply our method for localizing brain areas involved in different types of motor imagery using real data from Brain-Computer Interface (BCI) sessions. Our approach based on single-trial localization of complex Fourier coefficients yields class-specific focal sources in the sensorimotor cortices.

[1]  Anders M. Dale,et al.  Vector-based spatial–temporal minimum L1-norm solution for MEG , 2006, NeuroImage.

[2]  Pedro A. Valdes-Sosa,et al.  Penalized Least Squares methods for solving the EEG Inverse Problem , 2008 .

[3]  Mark Hallett,et al.  A functional magnetic resonance imaging study of cortical regions associated with motor task execution and motor ideation in humans , 1995 .

[4]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[5]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[6]  Tom Heskes,et al.  Interpreting single trial data using groupwise regularisation , 2009, NeuroImage.

[7]  Stefan Haufe,et al.  Single-trial analysis and classification of ERP components — A tutorial , 2011, NeuroImage.

[8]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[9]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[10]  Klaus-Robert Müller,et al.  The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects , 2007, NeuroImage.

[11]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[12]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[13]  M. Scherg,et al.  Evoked dipole source potentials of the human auditory cortex. , 1986, Electroencephalography and clinical neurophysiology.

[14]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[15]  Robert D. Nowak,et al.  Space–time event sparse penalization for magneto-/electroencephalography , 2009, NeuroImage.

[16]  Stefan Golaszewski,et al.  Functional Magnetic Resonance Imaging of the Human Sensorimotor Cortex Using a Novel Vibrotactile Stimulator , 2002, NeuroImage.

[17]  Klaus-Robert Müller,et al.  Machine learning for real-time single-trial EEG-analysis: From brain–computer interfacing to mental state monitoring , 2008, Journal of Neuroscience Methods.

[18]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[19]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[20]  Richard M. Leahy,et al.  Source localization using recursively applied and projected (RAP) MUSIC , 1997 .

[21]  K. Matsuura,et al.  Selective minimum-norm solution of the biomagnetic inverse problem , 1995, IEEE Transactions on Biomedical Engineering.

[22]  Klaus-Robert Müller,et al.  A regularized discriminative framework for EEG analysis with application to brain–computer interface , 2010, NeuroImage.

[23]  Masashi Sugiyama,et al.  Dual-Augmented Lagrangian Method for Efficient Sparse Reconstruction , 2009, IEEE Signal Processing Letters.

[24]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[25]  Michael Zibulevsky,et al.  MEG/EEG Source Localization Using Spatio-temporal Sparse Representations , 2004, ICA.

[26]  I F Gorodnitsky,et al.  Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.

[27]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[28]  Polina Golland,et al.  A distributed spatio-temporal EEG/MEG inverse solver , 2009, NeuroImage.

[29]  M. Diamond,et al.  Primary Motor and Sensory Cortex Activation during Motor Performance and Motor Imagery: A Functional Magnetic Resonance Imaging Study , 1996, The Journal of Neuroscience.

[30]  B.D. Van Veen,et al.  Beamforming: a versatile approach to spatial filtering , 1988, IEEE ASSP Magazine.

[31]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[32]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[33]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[34]  Andreas Ziehe,et al.  Combining sparsity and rotational invariance in EEG/MEG source reconstruction , 2008, NeuroImage.

[35]  Lei Ding,et al.  Sparse source imaging in electroencephalography with accurate field modeling , 2008, Human brain mapping.

[36]  Bhaskar D. Rao,et al.  An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem , 2007, IEEE Transactions on Signal Processing.

[37]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[38]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[39]  Andreas Ziehe,et al.  Estimating vector fields using sparse basis field expansions , 2008, NIPS.

[40]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[41]  G. Nolte,et al.  Analytic expansion of the EEG lead field for realistic volume conductors , 2005, Physics in medicine and biology.

[42]  Klaus-Robert Müller,et al.  Neurophysiological predictor of SMR-based BCI performance , 2010, NeuroImage.

[43]  P. Matthews,et al.  Identifying brain regions for integrative sensorimotor processing with ankle movements , 2005, Experimental Brain Research.

[44]  Klaus-Robert Müller,et al.  The Berlin Brain-Computer Interface , 2008, WCCI.

[45]  Bin He,et al.  Cortical Imaging of Event-Related (de)Synchronization During Online Control of Brain-Computer Interface Using Minimum-Norm Estimates in Frequency Domain , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[46]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .