Identification and application of ssDNA aptamers against H37Rv in the detection of Mycobacterium tuberculosis

[1]  Giyoung Kim,et al.  Comparison of Whole-Cell SELEX Methods for the Identification of Staphylococcus Aureus-Specific DNA Aptamers , 2015, Sensors.

[2]  F. Long,et al.  Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment. , 2014, Analytica chimica acta.

[3]  Yong-Soo Kwon,et al.  Respiratory Review of 2014: Tuberculosis and Nontuberculous Mycobacterial Pulmonary Disease , 2014, Tuberculosis and respiratory diseases.

[4]  Lee-Ann Jaykus,et al.  Selection and characterization of DNA aptamers specific for Listeria species. , 2014, Analytical biochemistry.

[5]  Chaoyong James Yang,et al.  In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging. , 2014, Analytical chemistry.

[6]  Margaret M. Johnson,et al.  Nontuberculous mycobacterial pulmonary infections. , 2014, Journal of thoracic disease.

[7]  H. Yang,et al.  Dynamic evolution and immunoreactivity of aptamers binding to polyclonal antibodies against MPT64 antigen of Mycobacterium tuberculosis , 2014, European Journal of Clinical Microbiology & Infectious Diseases.

[8]  L. Gabbasova,et al.  Global tuberculosis report (2014) , 2014 .

[9]  Yunxiao Wei,et al.  Selection, identification and application of a DNA aptamer against Listeria monocytogenes , 2013 .

[10]  Seong-Wook Lee,et al.  In vitro selection of RNA aptamer specific to Salmonella typhimurium. , 2013, Journal of microbiology and biotechnology.

[11]  Ming Yang,et al.  Highly Specific and Cost-Efficient Detection of Salmonella Paratyphi A Combining Aptamers with Single-Walled Carbon Nanotubes , 2013, Sensors.

[12]  R. Derike Smiley,et al.  Selection of DNA aptamers for capture and detection of Salmonella Typhimurium using a whole-cell SELEX approach in conjunction with cell sorting , 2013, Applied Microbiology and Biotechnology.

[13]  R. Smiley,et al.  Selection of DNA aptamers for capture and detection of Salmonella Typhimurium using a whole-cell SELEX approach in conjunction with cell sorting , 2013, Applied Microbiology and Biotechnology.

[14]  R. Schaub,et al.  Inhibition of tissue factor pathway inhibitor by the aptamer BAX499 improves clotting of hemophilic blood and plasma , 2012, Journal of thrombosis and haemostasis : JTH.

[15]  Lianhua Qin,et al.  Evaluation of the clinical value of ELISA based on MPT64 antibody aptamer for serological diagnosis of pulmonary tuberculosis , 2012, BMC Infectious Diseases.

[16]  R. Batey,et al.  The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. , 2011, Structure.

[17]  Fan Chen,et al.  Aptamer inhibits Mycobacterium tuberculosis (H37Rv) invasion of macrophage , 2011, Molecular Biology Reports.

[18]  Qiao Lin,et al.  Microfluidic aptameric affinity sensing of vasopressin for clinical diagnostic and therapeutic applications , 2011 .

[19]  X. Lan,et al.  Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa , 2011, European Journal of Clinical Microbiology & Infectious Diseases.

[20]  Michael Famulok,et al.  Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures , 2010, Nature Protocols.

[21]  R. Derike Smiley,et al.  Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX , 2010, Applied Microbiology and Biotechnology.

[22]  D. Shangguan,et al.  Development of DNA aptamers using Cell-SELEX , 2010, Nature Protocols.

[23]  Lianhua Qin,et al.  The selection and application of ssDNA aptamers against MPT64 protein in Mycobacterium tuberculosis , 2009, Clinical chemistry and laboratory medicine.

[24]  J. M. Healy,et al.  Complex Target SELEX , 2008 .

[25]  Gerhard Ziemer,et al.  CELL-SELEX: Novel Perspectives of Aptamer-Based Therapeutics , 2008, International journal of molecular sciences.

[26]  F. Luo,et al.  Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. , 2007, Biochemical and biophysical research communications.

[27]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[28]  R. Côté,et al.  COMPARISON OF FLUORESCENCE MICROSCOPY WITH ZIEHL-NEELSEN STAIN FOR DEMONSTRATION OF ACID-FAST BACILLI IN SMEAR PREPARATIONS AND TISSUE SECTIONS. , 1965, The American review of respiratory disease.