Cardiac Motion Estimation Using Covariant Derivatives and Helmholtz Decomposition

Quantification of cardiac function is important for the assessment of abnormalities and response to therapy. We present a method to reconstruct dense cardiac motion from sparse features in tagging MRI, decomposed into solenoidal and irrotational parts using multi-scale Helmholtz decomposition. Reconstruction is based on energy minimization using covariant derivatives exploiting prior knowledge about the motion field. The method is tested on cardiac motion images. Experiments on phantom data show that both covariant derivatives and multi-scale Helmholtz decomposition improve motion field reconstruction.

[1]  Per-Erik Forssén,et al.  Low and Medium Level Vision Using Channel Representations , 2004 .

[2]  L. Florack,et al.  Purely Evidence Based Multiscale Cardiac Tracking Using Optic Flow , 2007 .

[3]  Luc Florack,et al.  Dense Multiscale Motion Extraction from Cardiac Cine MR Tagging using HARP Technology , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[4]  Jerry L Prince,et al.  Stochastic models for DIV-CURL optical flow methods , 1996, IEEE Signal Processing Letters.

[5]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[6]  C. W. Groetsch,et al.  Elements of applicable functional analysis , 1980 .

[7]  Timo Kohlberger,et al.  Variational Dense Motion Estimation Using the Helmholtz Decomposition , 2003, Scale-Space.

[8]  Timo Kohlberger,et al.  A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods , 2006, International Journal of Computer Vision.

[9]  Bart M. ter Haar Romeny,et al.  Front-End Vision and Multi-Scale Image Analysis , 2003, Computational Imaging and Vision.

[10]  Remco Duits,et al.  A variational approach to cardiac motion estimation based on covariant derivatives and multi-scale Helmholtz decomposition , 2012 .

[11]  E L Bolson,et al.  Variability in the measurement of regional left ventricular wall motion from contrast angiograms. , 1983, Circulation.

[12]  Luc Florack,et al.  The Topological Structure of Scale-Space Images , 2000, Journal of Mathematical Imaging and Vision.

[13]  Patrick Pérez,et al.  Dense Estimation of Fluid Flows , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Alistair A. Young,et al.  Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images , 1999, Medical Image Anal..

[15]  Leon Axel,et al.  Dense Myocardium Deformation Estimation for 2D Tagged MRI , 2005, FIMH.

[16]  Luc Florack,et al.  Optic Flow from Multi-scale Dynamic Anchor Point Attributes , 2006, ICIAR.

[17]  Jerry L. Prince,et al.  Motion estimation from tagged MR image sequences , 1992, IEEE Trans. Medical Imaging.

[18]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[19]  Luc Florack,et al.  The Intrinsic Structure of Optic Flow Incorporating Measurement Duality , 1998, International Journal of Computer Vision.

[20]  C. Horgan,et al.  Bounds on eigenvalues of Sturm-Liouville problems with discontinuous coefficients , 1979 .

[21]  I. Lindell,et al.  Uniqueness and reconstruction for the anisotropic Helmholtz decomposition , 2002 .

[22]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[23]  Luc Florack,et al.  Optic Flow Using Multi-scale Anchor Points , 2009, CAIP.

[24]  L. Axel,et al.  MR imaging of motion with spatial modulation of magnetization. , 1989, Radiology.

[25]  Anne Cuzol,et al.  A Low Dimensional Fluid Motion Estimator , 2007, International Journal of Computer Vision.

[26]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Luc Florack,et al.  Representation and manipulation of images based on linear functionals , 2005 .

[28]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[29]  H. Helmholtz Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. , 1858 .

[30]  Atsushi Imiya,et al.  On the History of Gaussian Scale-Space Axiomatics , 1997, Gaussian Scale-Space Theory.

[31]  Max A. Viergever,et al.  Multiscale Approach to Image Sequence Analysis , 1997, Comput. Vis. Image Underst..

[32]  Hervé Delingette,et al.  International Journal of Computer Vision Manuscript No. 10.1007/s11263-010-0405-z The final publication is available at www.springerlink.com iLogDemons: A Demons-Based Registration Algorithm for Tracking Incompressible Elastic Biological Tissues , 2022 .

[33]  Luc Florack,et al.  Optic Flow Computation from Cardiac MR Tagging Using a Multiscale Differential Method: A Comparative Study with Velocity-Encoded MRI , 2003, MICCAI.

[34]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[35]  Petia Radeva,et al.  Tag surface reconstruction and tracking of myocardial beads from SPAMM-MRI with parametric B-spline surfaces , 2001, IEEE Transactions on Medical Imaging.

[36]  Remco Duits,et al.  Linear Image Reconstruction by Sobolev Norms on the Bounded Domain , 2007, SSVM.

[37]  Dennis Gabor,et al.  Theory of communication , 1946 .

[38]  Jerry L Prince,et al.  Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[39]  Xiaoxu Wang,et al.  Automated 3D Motion Tracking Using Gabor Filter Bank, Robust Point Matching, and Deformable Models , 2010, IEEE Transactions on Medical Imaging.

[40]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[41]  Hans-Peter Seidel,et al.  Complementary Optic Flow , 2009, EMMCVPR.

[42]  G. Arfken Mathematical Methods for Physicists , 1967 .

[43]  Luc Florack,et al.  Coarse-to-Fine Image Reconstruction Based on Weighted Differential Features and Background Gauge Fields , 2009, SSVM.

[44]  E. Zerhouni,et al.  Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. , 1988, Radiology.

[45]  Max A. Viergever,et al.  Detection of Critical Structures in Scale Space , 1999, Scale-Space.

[46]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.

[47]  Todor Georgiev,et al.  RELIGHTING, RETINEX THEORY, AND PERCEIVED GRADIENTS , 2005 .

[48]  Cengizhan Ozturk,et al.  Estimating motion from MRI data , 2003, Proc. IEEE.

[49]  Santiago V. Lombeyda,et al.  Discrete multiscale vector field decomposition , 2003, ACM Trans. Graph..

[50]  Daniel Rueckert,et al.  Analysis of myocardial motion in tagged MR images using nonrigid image registration , 2002, SPIE Medical Imaging.

[51]  Alfred M. Bruckstein,et al.  Over-Parameterized Variational Optical Flow , 2007, International Journal of Computer Vision.

[52]  Arjan Kuijper,et al.  The deep structure of Gaussian scale space images , 2002 .

[53]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[54]  Jerry L. Prince,et al.  Fast tracking of cardiac motion using 3D-HARP , 2005, IEEE Transactions on Biomedical Engineering.

[55]  B Bram Platel,et al.  Exploring the deep structure of images , 2007 .

[56]  Luc Florack,et al.  Extraction of Cardiac Motion Using Scale-Space Features Points and Gauged Reconstruction , 2009, CAIP.

[57]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[58]  Patrick Clarysse,et al.  Mapping Displacement and Deformation of the Heart With Local Sine-Wave Modeling , 2010, IEEE Transactions on Medical Imaging.

[59]  A. Young,et al.  Validation of tagging with MR imaging to estimate material deformation. , 1993, Radiology.