Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2)

Abstract. The ocean carbon cycle is a key player in the climate system through its role in regulating the atmospheric carbon dioxide concentration and other processes that alter the Earth's radiative balance. In the second version of the Norwegian Earth System Model (NorESM2), the oceanic carbon cycle component has gone through numerous updates that include, amongst others, improved process representations, increased interactions with the atmosphere, and additional new tracers. Oceanic dimethyl sulfide (DMS) is now prognostically simulated and its fluxes are directly coupled with the atmospheric component, leading to a direct feedback to the climate. Atmospheric nitrogen deposition and additional riverine inputs of other biogeochemical tracers have recently been included in the model. The implementation of new tracers such as “preformed” and “natural” tracers enables a separation of physical from biogeochemical drivers as well as of internal from external forcings and hence a better diagnostic of the simulated biogeochemical variability. Carbon isotope tracers have been implemented and will be relevant for studying long-term past climate changes. Here, we describe these new model implementations and present an evaluation of the model's performance in simulating the observed climatological states of water-column biogeochemistry and in simulating transient evolution over the historical period. Compared to its predecessor NorESM1, the new model's performance has improved considerably in many aspects. In the interior, the observed spatial patterns of nutrients, oxygen, and carbon chemistry are better reproduced, reducing the overall model biases. A new set of ecosystem parameters and improved mixed layer dynamics improve the representation of upper-ocean processes (biological production and air–sea CO2 fluxes) at seasonal timescale. Transient warming and air–sea CO2 fluxes over the historical period are also in good agreement with observation-based estimates. NorESM2 participates in the Coupled Model Intercomparison Project phase 6 (CMIP6) through DECK (Diagnostic, Evaluation and Characterization of Klima) and several endorsed MIP simulations.

[1]  C. Heinze,et al.  The Norwegian Earth System Model, NorESM2 – Evaluation of theCMIP6 DECK and historical simulations , 2020 .

[2]  A. Watson,et al.  Reconciling Observation and Model Trends in North Atlantic Surface CO2 , 2019, Global Biogeochemical Cycles.

[3]  João Paulo Ramos Teixeira,et al.  ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation , 2019, Earth System Dynamics.

[4]  R. Feely,et al.  The oceanic sink for anthropogenic CO2 from 1994 to 2007 , 2019, Science.

[5]  M. Bentsen,et al.  Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM) , 2019, Geoscientific Model Development.

[6]  J. Tjiputra,et al.  Ocean carbon inventory under warmer climate conditions – the case of the Last Interglacial , 2018, Climate of the Past.

[7]  João Paulo Ramos Teixeira,et al.  Climate feedbacks in the Earth system and prospects for their evaluation , 2018 .

[8]  C. Heinze,et al.  Southern Ocean controls of the vertical marine δ13C gradient – a modelling study , 2018, Biogeosciences.

[9]  K. Rodgers,et al.  Seasonal Asymmetry in the Evolution of Surface Ocean pCO2 and pH Thermodynamic Drivers and the Influence on Sea‐Air CO2 Flux , 2018, Global Biogeochemical Cycles.

[10]  E. Galbraith,et al.  The devil's in the disequilibrium: multi-component analysis of dissolved carbon and oxygen changes under a broad range of forcings in a general circulation model , 2018, Biogeosciences.

[11]  J. Schwinger,et al.  Mechanisms and Early Detections of Multidecadal Oxygen Changes in the Interior Subpolar North Atlantic , 2018 .

[12]  A. Olsen,et al.  Constraining Projection-Based Estimates of the Future North Atlantic Carbon Uptake , 2018 .

[13]  Atlantic deep water circulation during the last interglacial , 2018, Scientific Reports.

[14]  K. Six,et al.  Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2 , 2018, Nature Climate Change.

[15]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[16]  E. Galbraith,et al.  The devil's in the disequilibrium: sensitivity of ocean carbon storage to climate state and iron fertilization in a general circulation model , 2017 .

[17]  C. Heinze,et al.  Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model , 2017 .

[18]  I. N. McCave,et al.  Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2 , 2017, Nature Communications.

[19]  C. Guivarch,et al.  From shared socio-economic pathways (SSPs) to oceanic system pathways (OSPs): Building policy-relevant scenarios for global oceanic ecosystems and fisheries , 2017 .

[20]  P. Cox,et al.  Emergent constraints on projections of declining primary production in the tropical oceans , 2017 .

[21]  M. Bentsen,et al.  Ensemble data assimilation for ocean biogeochemical state and parameter estimation at different sites , 2017 .

[22]  M. Long,et al.  Rapid emergence of climate change in environmental drivers of marine ecosystems , 2017, Nature Communications.

[23]  A. Olsen,et al.  A global ocean climatology of preindustrial and modern ocean δ13C , 2017 .

[24]  Eric Guilyardi,et al.  Towards improved and more routine Earth system model evaluation in CMIP , 2016 .

[25]  Pierre Friedlingstein,et al.  C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6 , 2016 .

[26]  Sylvain Watelet,et al.  A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2 , 2016 .

[27]  Masao Ishii,et al.  The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean , 2016 .

[28]  K. Assmann,et al.  Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1) , 2016 .

[29]  Jacob A. Cram,et al.  Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency , 2016, Proceedings of the National Academy of Sciences.

[30]  Scott C. Doney,et al.  Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP) , 2016 .

[31]  V. Petrenko,et al.  Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation , 2016, Proceedings of the National Academy of Sciences.

[32]  Uta Dresdner Co2 In Seawater Equilibrium Kinetics Isotopes , 2016 .

[33]  E. Galbraith,et al.  How well do global ocean biogeochemistry models simulate dissolved iron distributions? , 2016 .

[34]  J. Tjiputra,et al.  The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks , 2015 .

[35]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[36]  Christoph Heinze,et al.  Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment , 2015 .

[37]  Andreas Oschlies,et al.  MOPS-1.0: modelling the regulation of the global oceanic nitrogen budget by marine biogeochemical processes , 2015 .

[38]  D. Bianchi,et al.  Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends , 2015 .

[39]  J. Hauck,et al.  Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor , 2015, Geophysical research letters.

[40]  S. Hsiang,et al.  Emergent risks and key vulnerabilities , 2015 .

[41]  A. Oschlies,et al.  MOPS-1 . 0 : towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical processes , 2015 .

[42]  G. Schmiedl,et al.  Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin , 2015 .

[43]  F. Joos,et al.  Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk , 2014 .

[44]  K. Lindsay,et al.  Carbon isotopes in the ocean model of the Community Earth System Model (CESM1) , 2014 .

[45]  F. Joos,et al.  Burial-nutrient feedbacks amplify the sensitivity of atmospheric carbon dioxide to changes in organic matter remineralisation , 2014 .

[46]  P. Landschützer,et al.  Recent variability of the global ocean carbon sink , 2014 .

[47]  Mati Kahru,et al.  Evaluating the ocean biogeochemical components of Earth system models using atmospheric potential oxygen and ocean color data , 2014 .

[48]  Rik Wanninkhof,et al.  Relationship between wind speed and gas exchange over the ocean revisited , 2014 .

[49]  C. Heinze,et al.  Nonlinearity of Ocean Carbon Cycle Feedbacks in CMIP5 Earth System Models , 2014 .

[50]  L. Lisiecki,et al.  Deglacial whole‐ocean δ13C change estimated from 480 benthic foraminiferal records , 2014 .

[51]  P. Cox,et al.  Emergent constraints on climate‐carbon cycle feedbacks in the CMIP5 Earth system models , 2014 .

[52]  David A. Siegel,et al.  Global assessment of ocean carbon export by combining satellite observations and food‐web models , 2014 .

[53]  J. Sarmiento,et al.  Response of the Ocean Natural Carbon Storage to Projected Twenty-First-Century Climate Change , 2014 .

[54]  Christoph Heinze,et al.  Long-term surface pCO2 trends from observations and models , 2014 .

[55]  K. Bruland,et al.  Controls of Trace Metals in Seawater , 2013 .

[56]  W. Collins,et al.  Evaluation of climate models , 2013 .

[57]  E. Maier‐Reimer,et al.  Global warming amplified by reduced sulphur fluxes as a result of ocean acidification , 2013 .

[58]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[59]  A. Mix,et al.  Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ 13 C) in the ocean , 2013 .

[60]  Pierre Friedlingstein,et al.  Carbon Dioxide and Climate: Perspectives on a Scientific Assessment , 2013 .

[61]  Jacqueline Boutin,et al.  An update to the Surface Ocean CO2 Atlas (SOCAT version 2) , 2013 .

[62]  Thomas F. Stocker,et al.  Allowable carbon emissions lowered by multiple climate targets , 2013, Nature.

[63]  Hongmei Li,et al.  Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI‐Earth system model in different CMIP5 experimental realizations , 2013 .

[64]  Carlo Giupponi,et al.  Innovative approaches to integrated global change modelling , 2013, Environ. Model. Softw..

[65]  A. Kirkevåg,et al.  The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate , 2013 .

[66]  Frank O. Bryan,et al.  The Impact of Oceanic Near-Inertial Waves on Climate , 2013 .

[67]  W. Broecker,et al.  The 13C record for atmospheric CO2: What is it trying to tell us? , 2013 .

[68]  Timothy P. Boyer,et al.  World ocean atlas 2013. Volume 4, Dissolved inorganic nutrients (phosphate, nitrate, silicate) , 2013 .

[69]  K.,et al.  Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models , 2012 .

[70]  Meric Srokosz,et al.  Past, Present, and Future Changes in the Atlantic Meridional Overturning Circulation , 2012 .

[71]  Christoph Heinze,et al.  Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM) , 2012 .

[72]  Kevin I. C. Oliver,et al.  Controls on the spatial distribution of oceanic δ 13 C DIC , 2012 .

[73]  P. Quay,et al.  13C constraints on ocean carbon cycle models , 2012 .

[74]  Yan Zhao,et al.  Evaluation of climate models using palaeoclimatic data , 2012 .

[75]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[76]  Qing Yan,et al.  Pre-industrial and mid-Pliocene simulations with NorESM-L , 2012 .

[77]  H. Melling,et al.  Observations in the Ocean , 2012 .

[78]  J. Sarmiento,et al.  Preformed and regenerated phosphate in ocean general circulation models: can right total concentrations be wrong? , 2011 .

[79]  Christoph Heinze,et al.  A model study of the seasonal and long-term North Atlantic surface pCO(2) variability , 2011 .

[80]  A. J. Kettle,et al.  An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean , 2011 .

[81]  P. Boyd,et al.  The biogeochemical cycle of iron in the ocean , 2010 .

[82]  Carolien Kroeze,et al.  Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation , 2010, Environ. Model. Softw..

[83]  J. Hartmann Bicarbonate-fluxes and CO2-consumption by chemical weathering on the Japanese Archipelago - Application of a multi-lithological model framework , 2009 .

[84]  Christoph Heinze,et al.  An isopycnic ocean carbon cycle model , 2009 .

[85]  Christoph Heinze,et al.  Bergen Earth system model (BCM-C): model description and regional climate-carbon cycle feedbacks assessment , 2009 .

[86]  Andreas Oschlies,et al.  Stoichiometries of remineralisation and denitrification in global biogeochemical ocean models , 2009 .

[87]  E. Maier‐Reimer,et al.  Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean - a model study , 2009 .

[88]  David A. Siegel,et al.  Carbon‐based primary productivity modeling with vertically resolved photoacclimation , 2008 .

[89]  B. Fox‐Kemper,et al.  Parameterization of Mixed Layer Eddies. Part I. Theory and Diagnosis , 2008 .

[90]  L. Bopp,et al.  Towards understanding global variability in ocean carbon‐13 , 2008 .

[91]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[92]  John P. Dunne,et al.  A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor , 2007 .

[93]  R. Dickinson,et al.  Couplings between changes in the climate system and biogeochemistry , 2007 .

[94]  A. Oschlies,et al.  On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles , 2007 .

[95]  M. Levasseur,et al.  Ocean Biogeochemical Dynamics , 2007 .

[96]  J. Tjiputra,et al.  Assimilation of seasonal chlorophyll and nutrient data into an adjoint three‐dimensional ocean carbon cycle model: Sensitivity analysis and ecosystem parameter optimization , 2007 .

[97]  E. Maier‐Reimer,et al.  What controls the oceanic dimethylsulfide (DMS) cycle? A modeling approach , 2006 .

[98]  Andreas Oschlies,et al.  Nitrogen Fixation and Temperature Physiological Constraints on the Global Distribution of Trichodesmium – Effect of Temperature on Diazotrophy Nitrogen Fixation and Temperature , 2022 .

[99]  Timothy P. Boyer,et al.  World Ocean Atlas 2005, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation [+DVD] , 2006 .

[100]  D. Wolf-Gladrow,et al.  A model of photosynthetic 13 c fractionation by marine phytoplankton based on diffusive molecular CO 2 uptake , 2006 .

[101]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[102]  N. Mahowald,et al.  Atmospheric global dust cycle and iron inputs to the ocean , 2005 .

[103]  M. Crucifix Distribution of carbon isotopes in the glacial ocean: A model study , 2005 .

[104]  John A. Harrison,et al.  Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application , 2005 .

[105]  Philip Stier,et al.  DMS cycle in the marine ocean-atmosphere system – a global model study , 2005 .

[106]  Joachim Segschneider,et al.  The HAMburg Ocean Carbon Cycle Model HAMOCC5.1 - Technical Description Release 1.1 , 2005 .

[107]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[108]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[109]  William B. Curry,et al.  Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean , 2004 .

[110]  E. Boyle,et al.  Is AOU a good measure of respiration in the oceans? , 2004, Geophysical Research Letters.

[111]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[112]  Stephen G. Yeager,et al.  Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies , 2004 .

[113]  K. Bruland,et al.  6.02 – Controls of Trace Metals in Seawater , 2003 .

[114]  P. Ziveri,et al.  Stable isotope ‘vital effects’ in coccolith calcite , 2003 .

[115]  P. Quay,et al.  Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake , 2003 .

[116]  W. Koeve Upper ocean carbon fluxes in the Atlantic Ocean: The importance of the POC:PIC ratio , 2002 .

[117]  I. Kriest Different parameterizations of marine snow in a 1D-model and their influence on representation of marine snow, nitrogen budget and sedimentation , 2002 .

[118]  R. Slater,et al.  A new estimate of the CaCO3 to organic carbon export ratio , 2002 .

[119]  S. Levitus,et al.  World ocean atlas 2013. Volume 1, Temperature , 2002 .

[120]  Timothy P. Boyer,et al.  World ocean atlas 2013. Volume 2, Salinity , 2002 .

[121]  J. L. Bullister,et al.  The solubility of sulfur hexafluoride in water and seawater , 2002 .

[122]  C. D. Keeling,et al.  An improved estimate of the isotopic air‐sea disequilibrium of CO2: Implications for the oceanic uptake of anthropogenic CO2 , 2001 .

[123]  G. Evans,et al.  Representing phytoplankton aggregates in biogeochemical models , 1999 .

[124]  J. Toggweiler Variation of atmospheric CO2 by ventilation of the ocean's deepest water , 1999 .

[125]  F. Morel,et al.  A model of carbon isotopic fractionation and active carbon uptake in phytoplankton , 1999 .

[126]  N. Weatherill,et al.  Introduction * , 1947, Nordic Journal of Linguistics.

[127]  K. L. Hanson,et al.  Effect of Phytoplankton Cell Geometry on Carbon Isotopic Fractionation , 1998 .

[128]  Robert R. Bidigare,et al.  Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum , 1997 .

[129]  P. Falkowski,et al.  Photosynthetic rates derived from satellite‐based chlorophyll concentration , 1997 .

[130]  Katharina D. Six,et al.  Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model , 1996 .

[131]  D. Wolf-Gladrow,et al.  A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake , 1996 .

[132]  W. Broecker,et al.  The influence of air‐sea exchange on the isotopic composition of oceanic carbon: Observations and modeling , 1995 .

[133]  Stephen A. Macko,et al.  Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2)aq: Theoretical considerations and experimental results , 1995 .

[134]  V. Smetácek,et al.  Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean , 1995, Nature.

[135]  D. Wilbur,et al.  CARBON ISOTOPE FRACTIONATION DURING GAS-WATER EXCHANGE AND DISSOLUTION OF CO2 , 1995 .

[136]  E. Maier‐Reimer,et al.  Geochemical cycles in an Ocean General Circulation Model , 1993 .

[137]  W. Broecker,et al.  The influence of air and sea exchange on the carbon isotope distribution in the sea , 1992 .

[138]  Louis I. Gordon,et al.  Oxygen solubility in seawater : better fitting equations , 1992 .

[139]  E. Boyle,et al.  Trace Elements in the Mississippi River Delta Outflow Region: Behavior at High Discharge , 1991 .

[140]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[141]  M. D. Keller,et al.  Dimethylsulfide production in marine phytoplankton. , 1989 .

[142]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[143]  David M. Karl,et al.  VERTEX: carbon cycling in the northeast Pacific , 1987 .

[144]  T. Ku,et al.  OXYGEN AND CARBON ISOTOPE FRACTIONATION IN BIOGENIC ARAGONITE: TEMPERATURE EFFECTS , 1986 .

[145]  R. Weiss,et al.  Solubilities of chlorofluorocarbons 11 and 12 in water and seawater , 1985 .

[146]  F.P. Bretherton,et al.  Earth system science and remote sensing , 1985, Proceedings of the IEEE.

[147]  E. Sholkovitz,et al.  The coagulation, solubility and adsorption properties of Fe, Mn, Cu, Ni, Cd, Co and humic acids in a river water , 1981 .

[148]  R. Weiss,et al.  Nitrous oxide solubility in water and seawater , 1980 .

[149]  Wallace S. Broecker,et al.  “NO”, a conservative water-mass tracer , 1974 .

[150]  W. Broecker,et al.  Gas exchange rates between air and sea , 1974 .

[151]  R. Weiss The solubility of nitrogen, oxygen and argon in water and seawater , 1970 .

[152]  THE SOLUBILITY , 2022 .