Narrow-Sense BCH Codes Over $ {\mathrm {GF}}(q)$ With Length $n=\frac {q^{m}-1}{q-1}$

Cyclic codes are widely employed in communication systems, storage devices, and consumer electronics, as they have efficient encoding and decoding algorithms. BCH codes, as a special subclass of cyclic codes, are in most cases among the best cyclic codes. A subclass of good BCH codes are the narrow-sense BCH codes over <inline-formula> <tex-math notation="LaTeX">$ {\mathrm {GF}}(q)$ </tex-math></inline-formula> with length <inline-formula> <tex-math notation="LaTeX">$n=(q^{m}-1)/(q-1)$ </tex-math></inline-formula>. Little is known about this class of BCH codes when <inline-formula> <tex-math notation="LaTeX">$q>2$ </tex-math></inline-formula>. The objective of this paper is to study some of the codes within this class. In particular, the dimension, the minimum distance, and the weight distribution of some ternary BCH codes with length <inline-formula> <tex-math notation="LaTeX">$n=(3^{m}-1)/2$ </tex-math></inline-formula> are determined in this paper. A class of ternary BCH codes meeting the Griesmer bound is identified. An application of some of the BCH codes in secret sharing is also investigated.

[1]  Pascale Charpin On a class of primitive BCH-codes , 1990, IEEE Trans. Inf. Theory.

[2]  C. Ding Codes From Difference Sets , 2014 .

[3]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[4]  Anne Canteaut,et al.  A New Algorithm for Finding Minimum-Weight Words in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense BCH Codes of Length , 1998 .

[5]  Cunsheng Ding,et al.  A class of three-weight cyclic codes , 2013, Finite Fields Their Appl..

[6]  Daniel Augot,et al.  Idempotents and the BCH bound , 1994, IEEE Trans. Inf. Theory.

[7]  David M. Mandelbaum Two applications of cyclotomic cosets to certain BCH codes (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[8]  Tadao Kasami,et al.  Some results on the minimum weight of primitive BCH codes (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[9]  Tadao Kasami,et al.  Some Remarks on BCH Bounds and Minimum Weights of Binary Primitive BCH Codes , 1969, IEEE Trans. Inf. Theory.

[10]  Pascale Charpin,et al.  Open problems on cyclic codes , 2009 .

[11]  LuoJinquan,et al.  On the Weight Distributions of Two Classes of Cyclic Codes , 2008 .

[12]  Cunsheng Ding,et al.  Secret sharing schemes from three classes of linear codes , 2006, IEEE Transactions on Information Theory.

[13]  Cunsheng Ding,et al.  Linear codes from perfect nonlinear mappings and their secret sharing schemes , 2005, IEEE Transactions on Information Theory.

[14]  Cunsheng Ding,et al.  Infinite families of 2-designs and 3-designs from linear codes , 2016, Discret. Math..

[15]  James L. Massey,et al.  Minimal Codewords and Secret Sharing , 1999 .

[16]  Philippe Delsarte,et al.  On subfield subcodes of modified Reed-Solomon codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[17]  Cunsheng Ding,et al.  Three-weight cyclic codes and their weight distributions , 2016, Discret. Math..

[18]  Keqin Feng,et al.  On the Weight Distributions of Two Classes of Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[19]  Yuansheng Tang,et al.  Cyclic Codes and Sequences: The Generalized Kasami Case , 2009, IEEE Transactions on Information Theory.

[20]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[21]  Henry B. Mann,et al.  On the Number of Information Symbols in Bose-Chaudhuri Codes , 1962, Inf. Control..

[22]  Elwyn R. Berlekamp The enumeration of information symbols in BCH codes , 1967 .

[23]  Cunsheng Ding,et al.  The Bose and Minimum Distance of a Class of BCH Codes , 2015, IEEE Transactions on Information Theory.

[24]  Cunsheng Ding,et al.  Infinite families of t-designs from a type of five-weight codes , 2016, ArXiv.

[25]  Dian-Wu Yue,et al.  Minimum cyclotomic coset representatives and their applications to BCH codes and Goppa Codes , 2000, IEEE Trans. Inf. Theory.

[26]  Yuansheng Tang,et al.  Exponential Sums, Cyclic Codes and Sequences: the Odd Characteristic Kasami Case , 2009, ArXiv.

[27]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[28]  Pascale Charpin,et al.  Studying the locator polynomials of minimum weight codewords of BCH codes , 1992, IEEE Trans. Inf. Theory.

[29]  Cunsheng Ding,et al.  How to Build Robust Shared Control Systems , 1998, Des. Codes Cryptogr..

[30]  Yue Dianwu,et al.  On the dimension and minimum distance of BCH codes over GF(q) , 1996 .

[31]  Cunsheng Ding,et al.  Infinite families of 3-designs from a type of five-weight code , 2018, Des. Codes Cryptogr..

[32]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[33]  Hongbo Zhu,et al.  On the minimum distance of composite-length BCH codes , 1999, IEEE Communications Letters.