Ultra-low threshold gallium nitride photonic crystal nanobeam laser
暂无分享,去创建一个
Evelyn L. Hu | Alexander Woolf | Rachel A. Oliver | Q. Quan | E. Hu | R. Oliver | T. Zhu | Qimin Quan | Alexander Woolf | Tongtong Zhu | Danqing Wang | Nan Niu | Danqing Wang | N. Niu
[1] S. Denbaars,et al. Removal of thick (>100nm) InGaN layers for optical devices using band-gap-selective photoelectrochemical etching , 2004 .
[2] 宁北芳,et al. 疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .
[3] Toshihiko Baba,et al. Photonic crystals and microdisk cavities based on GaInAsP-InP system , 1997 .
[4] E. Hu,et al. A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity , 2012, 1206.5416.
[5] J. Harris,et al. Nanobeam photonic crystal cavity quantum dot laser. , 2010, Optics express.
[6] Hao-Chung Kuo,et al. Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector , 2010 .
[7] S. Gulde,et al. Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.
[8] C. Humphreys,et al. The impact of substrate miscut on the microstructure and photoluminescence efficiency of (0001) InGaN quantum wells grown by a two-temperature method , 2014 .
[9] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[10] Lateral charge carrier diffusion in InGaN quantum wells , 2012 .
[11] Larry A. Coldren,et al. GAIN SPECTROSCOPY ON INGAN/GAN QUANTUM WELL DIODES , 1997 .
[12] M. S. Skolnick,et al. Strong coupling phenomena in quantum microcavity structures , 1998 .
[13] Richard K. Chang,et al. Stimulated emission and lasing in whispering-gallery modes of GaN microdisk cavities , 1999 .
[14] Igor Aharonovich,et al. Low threshold, room-temperature microdisk lasers in the blue spectral range , 2012, 1208.6452.
[15] Igor Aharonovich,et al. Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities , 2014, Proceedings of the National Academy of Sciences.
[16] Marko Loncar,et al. Photonic crystal nanobeam lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.
[17] C. Humphreys,et al. Characterization of InGaN quantum wells with gross fluctuations in width , 2007 .
[18] Q. Quan,et al. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. , 2011, Optics express.
[19] U. Schwarz,et al. Time-of-flight measurements of charge carrier diffusion in In_xGa_[1-x]N/GaN quantum wells , 2011 .
[20] Colin J. Humphreys,et al. Highlighting threading dislocations in MOVPE-grown GaN using an in situ treatment with SiH4 and NH3 , 2006 .
[21] A. Kiraz,et al. Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing , 2003, quant-ph/0308117.
[22] C. Humphreys,et al. Growth and characterisation of GaN with reduced dislocation density , 2004 .
[23] Shuji Nakamura,et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks , 2007 .
[24] P. Petroff,et al. A quantum dot single-photon turnstile device. , 2000, Science.
[25] P. Deotare,et al. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide , 2010, 1002.1319.
[26] A Lemaître,et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.
[27] W. A. Phillips,et al. The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes , 2013 .
[28] Yoshihisa Yamamoto,et al. Efficient source of single photons: a single quantum dot in a micropost microcavity. , 2002 .