Ultra-low threshold gallium nitride photonic crystal nanobeam laser

We report exceptionally low thresholds (9.1 μJ/cm2) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

[1]  S. Denbaars,et al.  Removal of thick (>100nm) InGaN layers for optical devices using band-gap-selective photoelectrochemical etching , 2004 .

[2]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[3]  Toshihiko Baba,et al.  Photonic crystals and microdisk cavities based on GaInAsP-InP system , 1997 .

[4]  E. Hu,et al.  A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity , 2012, 1206.5416.

[5]  J. Harris,et al.  Nanobeam photonic crystal cavity quantum dot laser. , 2010, Optics express.

[6]  Hao-Chung Kuo,et al.  Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector , 2010 .

[7]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[8]  C. Humphreys,et al.  The impact of substrate miscut on the microstructure and photoluminescence efficiency of (0001) InGaN quantum wells grown by a two-temperature method , 2014 .

[9]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[10]  Lateral charge carrier diffusion in InGaN quantum wells , 2012 .

[11]  Larry A. Coldren,et al.  GAIN SPECTROSCOPY ON INGAN/GAN QUANTUM WELL DIODES , 1997 .

[12]  M. S. Skolnick,et al.  Strong coupling phenomena in quantum microcavity structures , 1998 .

[13]  Richard K. Chang,et al.  Stimulated emission and lasing in whispering-gallery modes of GaN microdisk cavities , 1999 .

[14]  Igor Aharonovich,et al.  Low threshold, room-temperature microdisk lasers in the blue spectral range , 2012, 1208.6452.

[15]  Igor Aharonovich,et al.  Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities , 2014, Proceedings of the National Academy of Sciences.

[16]  Marko Loncar,et al.  Photonic crystal nanobeam lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[17]  C. Humphreys,et al.  Characterization of InGaN quantum wells with gross fluctuations in width , 2007 .

[18]  Q. Quan,et al.  Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. , 2011, Optics express.

[19]  U. Schwarz,et al.  Time-of-flight measurements of charge carrier diffusion in In_xGa_[1-x]N/GaN quantum wells , 2011 .

[20]  Colin J. Humphreys,et al.  Highlighting threading dislocations in MOVPE-grown GaN using an in situ treatment with SiH4 and NH3 , 2006 .

[21]  A. Kiraz,et al.  Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing , 2003, quant-ph/0308117.

[22]  C. Humphreys,et al.  Growth and characterisation of GaN with reduced dislocation density , 2004 .

[23]  Shuji Nakamura,et al.  Room-temperature continuous-wave lasing in GaN/InGaN microdisks , 2007 .

[24]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[25]  P. Deotare,et al.  Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide , 2010, 1002.1319.

[26]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[27]  W. A. Phillips,et al.  The impact of gross well width fluctuations on the efficiency of GaN-based light emitting diodes , 2013 .

[28]  Yoshihisa Yamamoto,et al.  Efficient source of single photons: a single quantum dot in a micropost microcavity. , 2002 .